Poster Session

Pr_{1.333}[P₂Se₆]: A link between two non-isotypic relatives

B. M. Schulz, P. L. Lange and Th. Schleid

University of Stuttgart, Institute for Inorganic Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany

schleid@iac.uni-stuttgart.de

In 2002, Kanatzidis et al. synthesized and characterized the rare-earth metal(III) hexaselenidodiphosphate(IV) Ce_{1,333}[P₂Se₆], which crystallizes monoclinically in the space group $P2_1/c$ [1]. Schleid et al. succeeded to find with Nd_{1.333}[P2Se₆] [2,3] a further representative, which showed the same structured formula, but adopts a different structure type. It crystallizes in the triclinic space group $P\overline{1}$ with a modified NaYb[P₂S₆]-type structure [3], whilst Ce_{1.333}[P₂Se₆] principally mimics the NaCe[P₂Se₆]-type structure [1]. Here we present the gap-filling Pr₁₃₃₃[P₂Se₆], which also crystallizes triclinically in the space group $P\overline{1}$ with a = 685.32(5) pm, b = 759.41(6) pm, $c = 962.56(7) \text{ pm}, \ \alpha = 90.087(3)^{\circ}, \ \beta = 91.723(3)^{\circ} \text{ and } \gamma = 90.034(3)^{\circ} \text{ for } Z = 2 \text{ at } 293 \text{ K}$ (CSD number: 2089248), just like Nd_{1.333}[P₂Se₆]. An extended unit cell of the title compound is depicted in Figure 1 (mid) with highlighted [P₂Se₆]⁴-units, which occur in staggered conformation, very characteristic for hexaselenidodiphosphates(IV). The interatomic distances within these ethane-like anions are also well in the usual range (d(P-P) = 220 - 221 pm, d(P-Se) = 218 - 220 pm). The environment of the two distinct Pr^{3+} cations resemble bicapped trigonal prisms with distances between praseodymium and selenium from 303 to 337 pm for C.N. = 8 (Figure 1, left and right). Bicapped trigonal prisms are also found in the neighboring compounds $Ce_{1,333}[P_2Se_6]$ and $Nd_{1,333}[P_2Se_6]$ with very similar interatomic Ln-Se distances. Whilst in the neodymium and praseodymium derivatives these $[LnS_8]^{13}$ polyhedra are edge-connected to form single chains for every individual cation (Ln1 and Ln2), which finally fuse to a framework, a three-dimensional network immediately emerges for the cerium compound from selenium polyhedra of the three crystallographically different Ce³⁺ cations with C.N. = 8. All three compounds have cationic defects in common, but the defect sites for $Pr_{1,333}[P_2Se_6]$ are on different crystallographic positions as compared to $Nd_{1,333}[P_2Se_6]$, making both structures not completely isotypic.

If the volumes of the unit cells for Ce_{1.333}[P₂Se₆] (a = 680.57(5) pm, b = 2296.85(15) pm, c = 1172.26(8) pm, $\beta = 124.096(1)^{\circ}$ for Z = 6 at 100 K), Pr_{1.333}[P₂Se₆] (vide supra) and Nd_{1.333}[P₂Se₆] (a = 682.41(5) pm, b = 757.98(6) pm, c = 961.03(7) pm, $\alpha = 90.176(3)^{\circ}$, $\beta = 91.789(3)^{\circ}$, $\gamma = 90.108(3)^{\circ}$ for Z = 2 at 293 K) are compared and the effect of the lanthanoid contraction is taken into account, they can be nicely compared, if the number of formula units in the unit cell is reduced to Z = 2. Then the volumes are 0.506 nm³ for Ce_{1.333}[P₂Se₆], 0.501 nm³ for Pr_{1.333}[P₂Se₆] and 0.497 nm³ for Nd_{1.333}[P₂Se₆].

Figure 1. Extended unit cell of $Pr_{1,333}[P_2Se_6]$ with shown P–P and P–Se bonds to illustrate the isolation of the complex $[P_2Se_6]^{4-}$ anions (mid) and bicapped trigonal prisms $[PrSe_8]^{13-}$ for Pr1 (left) and the defect site Pr2 (right) shown as tritocircles in the mid.

[1] J. A. Aitken, M. Evain, L. Iordanis, M. G. Kanatzidis, (2002) Inorg. Chem. 41, 180.

[2] B. M. Schulz, Neues über Chalkogenophosphate mit Alkali- und Seltenerdmetallen. Dissertation (2020), Universität Stuttgart.

[3] M. V. Kurz, B. M. Schulz, Th. Schleid, (2020) Z. Kristallogr. 840, 63.

Keywords: crystal structure; rare-earth metals; praseodymium; selenidophosphates

Acta Cryst. (2021), A77, C1025