## Immobilization of tungsten trioxide on the surface of mesoporous silica: structural investigation of the role of crystalline water on photocatalyst stability

## **Oussama Oulhakem**

Materials Nano-Materials unit, Energy Research Centre. Faculty of Sciences, Mohammed V University in Rabat, B.P. 1014 Rabat, Morocco

## Oussama.oulhakem@um5s.net.ma

Tungstite (WO<sub>3</sub>.H<sub>2</sub>O), was successfully immobilized on the surface of mesoporous Silica **SiO<sub>2</sub>/WO<sub>3</sub>** by in-situ reaction using poly (ethylene oxide) as polymeric template and Na2WO4 as precursor and immobilized tungsten trioxide **SiO<sub>2</sub>/WO<sub>3</sub>-C** was obtained by calcination of **SiO<sub>2</sub>/WO<sub>3</sub>** at 350°C. The as-obtained materials were characterized by N<sub>2</sub> sorption, SEM, PXRD, FT-IR, UV-Visible and TGA.

Structural characterization of both materials indicates the succeed immobilization of tungstite and tungsten trioxide in amorphous silica. The diffraction picks in **SiO**<sub>2</sub>/**WO**<sub>3</sub> are arising from two different phases corresponding to WO<sub>3</sub> and WO<sub>3</sub>.H<sub>2</sub>O, Rietveld refinement assume the orthorhombic crystal lattice for both compounds to with parameters value a=5.25 Å, b=10.72 Å, c=5.13 Å for WO<sub>3</sub>.H<sub>2</sub>O. phases quantification assumes the presence of tungstite (WO<sub>3</sub>.H<sub>2</sub>O) as a majority phase by 75.3%, which allow us to investigate it crystallographic structure. The crystal structure of the immobilized tungstite is generally formed by layers of distorted octahedral building blocks of WO<sub>6</sub> in which one axial oxygen position is occupied by water molecule. After calcination at 330°C a phase transformation to the monoclinic structure is observed and water molecules are eliminated from the structure, lattice parameters obtained after Rietveld refinement are a=7.32 Å, b=7.54 Å, c=3.85 Å.

The as-prepared materials are highly efficient in the oxidative photo-degradation of sulfamethazine in water with an efficiency of 92.14% and 92.84% for SiO<sub>2</sub>/WO<sub>3</sub> and SiO<sub>2</sub>/WO<sub>3</sub>-C respectively, with different stability aspect. Indeed, SiO<sub>2</sub>/WO<sub>3</sub>-C show a poor stability when it reused for 6 times due to leaching problem. In the other hand SiO<sub>2</sub>/WO<sub>3</sub> could be reused with a small loss of activity after 6 cycles of photocatalysis. The stability difference is due to crystallographic structure differences that is characterized by the presence of water molecules in SiO<sub>2</sub>/WO<sub>3</sub> and its absence on SiO<sub>2</sub>/WO<sub>3</sub>-C. The good stability can be attributed to the strong van-derwalls interaction between the oxygen of silica network and the hydrogen of water molecule encapsulated in tungstite structure.

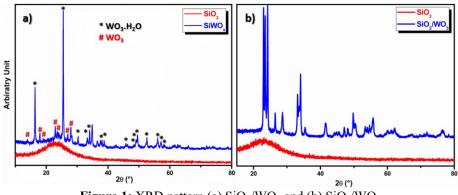



Figure 1: XRD pattern (a) SiO<sub>2</sub>/WO<sub>3</sub> and (b) SiO<sub>2</sub>/WO<sub>3</sub>

## Keywords: tungsten trioxide, tungstite, photocatalysis, sulfamethazine