## Successive transitions to modulated states in the {R}Pt<sub>2</sub>Si<sub>2</sub>family

## Elen Duverger-Nédellec<sup>1,2</sup>, Michal Falkowski<sup>2,3,4</sup>, Petr Doležal<sup>2</sup>, Volodymyr Buturlim<sup>2</sup>, Alexander Andreev<sup>3</sup>, Jérémy Forté<sup>5</sup>, Lise-Marie Chamoreau<sup>5</sup>, Ladislav Havela<sup>2</sup>

<sup>1</sup>Institut de Chimie de la Matière Condensée de Bordeaux, Pessac cedex, France; <sup>2</sup>Charles University, Department of Condensed Matter Physics, Prague, Czech Republic; <sup>3</sup>Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic; <sup>4</sup>Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland; <sup>5</sup>Institut Parisien de Chimie Moléculaire, Sorbonne Université, Paris, France;

## elenduvergernedellec@gmail.com

Materials with low electronic dimensionality are known to exhibit remarkable properties such as thermoelectricity, high electron mobility or superconductivity. In addition, this low dimensionality also favors the appearance of another phenomenon: charge density wave instability (CDW). The transition to a CDW state is described by Peierls [1] as a gap opening at the Fermi Surface of the material leading to the modulation of its electronic density accompanied by a periodic distortion of its atomic lattice. Therefore, a transition to a CDW state is characterized by the appearance of an anomaly in the electron transport properties and of additional reflections in the X-ray diffraction pattern, called satellite reflections.

A resistive signature, characteristic of a CDW transition, was observed for the compounds {R}Pt<sub>2</sub>Si<sub>2</sub>, with R = La, Nd and Pr, at 112 K, 77 K and 88 K respectively [2,3]. The thermal study of the X-ray diffraction pattern of these materials reveals not only the appearance of satellite reflections associated with the reported CDW transitions but also the existence of another transition, at higher temperature, leading to a modulated structure [4,5]. This unexpected phase transition, for which no anomaly in the electron transport properties is observed, is characterized by the appearance of an incommensurate modulation characterised by the wave vectors  $\mathbf{q}_1 = 0.360\mathbf{a}^*$ ,  $0.323\mathbf{a}^*$  and  $0.326\mathbf{a}^*$  for LaPt<sub>2</sub>Si<sub>2</sub>, NdPt<sub>2</sub>Si<sub>2</sub> and PrPt<sub>2</sub>Si<sub>2</sub>, respectively. In the case of LaPt<sub>2</sub>Si<sub>2</sub>, this vector is very similar to the nesting vector of a CDW transition determined by *ab initio* calculations [6]. At lower temperature, a new set of satellites appears, coexisting with the first one, corresponding to the CDW transition reported in the literature and characterized by the wave vectors  $\mathbf{q}_2 = (0.187; 0.158; 0.158; 0.5)$  and (0.168; 0.168; 0.5) for LaPt<sub>2</sub>Si<sub>2</sub>, NdPt<sub>2</sub>Si<sub>2</sub> and PrPt<sub>2</sub>Si<sub>2</sub>, respectively.

These observations raise a new question: what is the nature of the first structural transition of  $\{R\}Pt_2Si_2$ ?

[1]: Peierls, R.E. (1955). Quantum Theory of Solids. London, Oxford Univ. Press.

[2]: Gupta, R., Dhar, S.K., Thamizhavel, A., Rajeev, K.P., & Hossain, Z. (2017). J.Phys.: Condens. Matter 29, 255601.

[3]: Nagano, Y., Araoka, N., Mitsuda, A., Yayama, Y., Wada, H., Ichihara, M., Isobe, M., & Ueda, Y. (2013) J. Phys. Soc. Jpn. 82, 064715.

[4]: Falkowski, M., Doležal, P., Andreev, A.V., Duverger-Nédellec, E., & Havela, L. (2019). Phys. Rev. B 100, 064103.

[5] : Falkowski, M., Doležal, P., Duverger-Nédellec, E., Chamoreau L.-M., Forté J., Andreev, A.V., & Havela, L. (2020), Phys. Rev. B 101, 174110

[6]: Kim, S., Kim, K., Min, B.I. (2015). Sci. Rep. 5, 15052.

## Keywords: Phase transitions, Modulated structures, Charge density waves

Acknowledgments: This study was funded by the ERDF project NANOCENT : Nanomaterials Centre for Advanced Applications (CZ.02.1.01/0.0/0.0/15\_003/0000485).