Dodecahedral Structures from D_{6} lattice

Nazife Ozdes Koca
Sultan Qaboos University, Muscat, Oman;
nazife@squ.edu.om

3D-facets of the Delone cells of the root lattice which tile the six-dimensional Euclidean space in an alternating order are projected into three-dimensional space. They are classified into six Mosseri-Sadoc tetrahedral tiles of edge lengths 1 and golden ratio with faces normal to the 5 -fold and 3 -fold axes. The icosahedron, dodecahedron and icosidodecahedron whose vertices are obtained from the fundamental weights of the icosahedral group are dissected in terms of six tetrahedra. A set of four tiles are composed out of six fundamental tiles, faces of which, are normal to the 5 -fold axes of the icosahedral group. It is shown that the 3D-Euclidean space can be tiled face-to-face with maximal face coverage by the composite tiles with an inflation factor generated by an inflation matrix. We note that dodecahedra with edge lengths of 1 and naturally occur already in the second and third order of the inflations. The 3D patches displaying 5 -fold, 3 -fold and 2 -fold symmetries are obtained in the inflated dodecahedral structures with edge lengths with $\mathrm{n}^{\text {th }}$ power of the golden ratio. The planar tiling of the faces of the composite tiles follow the edge-to-edge matching of the Robinson triangles.

Keywords: Icosahedral quasicrystals, aperiodic tiling, lattices, projections of polytopes, polyhedra

