Disordering mechanism during Li-ion intercalation in nano-rutile TiO₂

Christian K. Christensen,¹ Ananya R. Balakrishna,² Bo B. Iversen,³ Yet-Ming Chiang,² Dorthe B. Ravnsbæk^{1,*}

¹ Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark ²Massachussetts Institute of Technology (MIT), Mass. Ave. 77, Cambridge, MA 02139, USA ³Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

dbra@sdu.dk

Traditional Li-ion battery electrodes are highly crystalline materials in which the ions are intercalated between atomic layers or channels in the atomic lattice. Such electrodes are typically characterized by retaining their crystallinity for many charge-discharge cycles. However, a number of electrode materials undergo an irreversible loss of crystallinity upon Li-intercalation. Examples of such materials are rutile TiO₂ and orthorhombic V₂O₅, which loses long range order upon intercalation of >0.8 and >2 Li, respectively [1,2]. Very little is presently known about neither the mechanism of such order-disorder phenomena nor about how ion storage occurs in disordered structures in subsequent charge-discharge cycles. This is in spite that such materials represent cheap and effective alternatives to their crystalline counterparts, i.e. recently amorphous V_2O_5 was shown to reversibly store close to double the amount of Na-ions as compared to crystalline V_2O_5 [3].

Herein, we investigate the structural evolution during Li-intercalation and the associated disordering process in nano-rutile TiO_2 by means of combined *ex situ* and *operando* synchrotron radiation powder X-ray diffraction and total scattering with pair distribution function (PDF) analysis. We find that, the disorder mechanism entails a reconstructive phase transformation with formation of a distorted α -NaFeO₂ structure. Furthermore, small disordered domains form due to extensive dislocations between the distorted α -NaFeO₂ domains [4].

Figure 1: PDF fit of initial TiO₂ rutile structure model (bottom) and discharged LiTiO₂ with α-NaFeO₂ structure and disordered grain boundaries (top).

After amorphization, TiO_2 reversibly stores ~200 mAh/g with ion storage occurring via solid solution reactions with remarkable small volume changes between the end-members. Our results suggest that these materials may hold potential as cheap electrode materials despite the fact that they lose long range order. Also our methodology opens for investigating a wide range of order-disorder phenomena in electrochemically driven phase transitions.

[1] Borghols, W. J. H., Wagemaker, M., Lafont, U., Kelder, E. M. & Mulder, F. M. (2008). Chem. Mater. 20, 2949.

[2] Delmas, C., Cognac-Auradou, H., Cocciantelli, J.M., M6n6tder, M. & Doumerc, J.P. (1994). Solid State Ionics 69, 257.

[3] Uchaker, E., Zheng, Y. Z., Li, S., Candelaria, S. L., Hu, S. & Cao, G. Z. (2014). J. Mater. Chem. A 2, 18208

[4] Christensen, C. K., Balakrishna, A. R., Iversen, B. B., Chiang, Y.-M. & Ravnsbæk, D. B. (2019). Nanoscale 11, 12347.

Keywords: battery electrode materials; disorder; nano-crystallinity, total scattering, pair distribution function

We thank the Carlsberg Foundation and the instrument center DanScatt for funding.

Acta Cryst. (2021), A77, C1063