Poster Session

Structure of sustainable lead-free low-melting vanadate glass

Yohei Onodera^{1,2}, Shinji Kohara², Takuya Aoyagi³, Takashi Naito³, Jens R. Stellhorn⁴, Shinya Hosokawa⁵, Hiroo Tajiri⁶, Alex C. Hannon⁷, László Pusztai⁸, Pál Jóvári⁸

¹Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan,
²National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan,
³Research and Development Group, Hitachi Ltd., Hitachi, Ibaraki 319-1292, Japan,
⁴Department of Applied Chemistry, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan,
⁵Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
⁶Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
⁷ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, UK
⁸Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest 1121, Hungary

y-onodera@rri.kyoto-u.ac.jp

Vanadium based glasses (vanadate glasses) with a sealing temperature of around 400 °C are now being applied in electronics devices, such as in crystal oscillators and Micro Electro Mechanical Systems (MEMS) as an alternative sealant to the toxic low-melting point glasses containing lead and fluorine. We have developed an $Ag_2O-V_2O_5$ -TeO₂ glass with a sealing temperature of 200-300 °C. However, the structure of the $Ag_2O-V_2O_5$ -TeO₂ glass is still unknown and hence it is necessary to reveal the relationship between the atomistic structure and the property of the vanadate glass.

In this study, we performed high-energy X-ray and neutron diffraction, extended X-ray absorption fine structure (EXAFS), and anomalous X-ray scattering (AXS) [1] measurements on an $Ag_2O-V_2O_5$ -TeO_2 glass to obtain sufficient element specific structural information on constituent atoms. To uncover the glass structure in detail, we constructed a three-dimensional atomistic structure model for $Ag_2O-V_2O_5$ -TeO_2 glass by employing the reverse Monte Carlo [2] technique based on X-ray/neutron diffraction, EXAFS and AXS data. Furthermore, topological analyses were applied to the three-dimensional glass structure model to extract topologies related to the low-melting property.

[1] Saito, M., Park, C., Omote, K., Sugiyama, K., Waseda, Y. (1997). J. Phys. Soc. Jpn. 66, 633.

[2] McGreevy, R. L., Pusztai, L. (1988). Molec. Simul. 1, 359.

Keywords: X-ray diffraction, neutron diffraction, anomalous X-ray scattering, low-melting glass, reverse Monte Carlo