Expanded chemistry and mixed ionic-electronic conductivity in vanadium-substituted variants of γ-Ba₄Nb₂O₉

Alex Brown¹, Bettina Schwaighofer^{2,3}, Max Avdeev^{1,4}, Bernt Johannessen⁵, Ivana Radosavljevic Evans², Chris Ling¹

¹School of Chemistry, The University of Sydney, Sydney, Australia;
²Department of Chemistry, Durham University, Science Site, South Road, Durham DH1 3LE, U.K.;
³Institut Laue Langevin, 71 Rue de Martyrs, 38000 Grenoble, France;
⁴Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234, Australia;
⁵Australian Synchrotron, Clayton, Victoria, 3168 Australia;

alexander.brown@sydney.edu.au

Two new compositional series with the previously unique γ -Ba₄Nb₂O₉ type structure, γ -Ba₄V_xTa_{2-x}O₉ and γ -Ba₄V_xNb_{2-x}O₉ (x = 0-2/3), have been synthesised *via* solid-state methods. Undoped Ba₄Ta₂O₉ forms a 6H-perovskite type phase, but with sufficient V doping the γ -type phase is thermodynamically preferred and possibly more stable than γ -Ba₄Nb₂O₉, forming at a 200 °C lower synthesis temperature. This is explained by the fact that Nb⁵⁺ ions in γ -Ba₄Nb₂O₉ simultaneously occupy 4-, 5- and 6-coordinate sites in the oxide sublattice, which is less stable than allowing smaller V⁵⁺ to occupy the former and larger Ta⁵⁺ to occupy the latter. We characterised the structures of the new phases using a combination of X-ray and neutron powder diffraction. All compositions hydrate rapidly and extensively (up to 1/3 H₂O per formula unit) under ambient conditions, like the parent γ -Ba₄Nb₂O₉ phase, and show moderate but improved mixed-ionic electronic conduction. At lower temperatures the ionic conduction is predominately protonic, while at higher temperatures it is dominated by oxide and electron-hole conduction.

Keywords: Hydration, Proton conduction, Neutron diffraction, XANES