Solid-state NMR crystallography analysis of Lorlatinib, an active pharmaceutical ingredient

Zainab Rehman

University of Warwick, Coventry, United Kingdom;

zainab.rehman@warwick.ac.uk

A NMR crystallography study is presented for Lorlatinib, an active pharmaceutical ingredient (API) used in the treatment of lung cancer. Various one-dimensional and two-dimensional solid-state magic-angle spinning (MAS) NMR experiments have been performed that provide the ¹H and ¹³C chemical shifts as well as the ¹⁴N shifts. A ¹H(DQ)-¹H(SQ) MAS NMR spectrum was obtained with BaBa recoupling that reveals proton-proton proximities interactions between the ¹H nuclei that are typically within 3.5 Å of each other. A ¹⁴N-¹H HMQC MAS NMR spectrum reveals that one of the NH₂¹H resonances has a significantly low ¹H chemical shift; this is interpreted in terms of differences in intermolecular hydrogen bonding. Enhanced resolution is observed in two-dimensional ¹H-¹³C heteronuclear MAS NMR experiments at 1 GHz.

Keywords: Solid State NMR; Pharmaceuticals