
research papers

Acta Cryst. (2022). A78, 1–9 https://doi.org/10.1107/S2053273321011037 1

A new method for lattice reduction using
directional and hyperplanar shearing

Cyril Cayron*

Laboratory of Thermo Mechanical Metallurgy (LMTM), PX Group Chair, EPFL, Rue de la Maladière 71b, Neuchâtel, 2000,

Switzerland. *Correspondence e-mail: cyril.cayron@epfl.ch

A geometric method of lattice reduction based on cycles of directional and

hyperplanar shears is presented. The deviation from cubicity at each step of the

reduction is evaluated by a parameter called ‘basis rhombicity’ which is the sum

of the absolute values of the elements of the metric tensor associated with the

basis. The levels of reduction are quite similar to those obtained with the

Lenstra–Lenstra–Lovász (LLL) algorithm, at least up to the moderate

dimensions that have been tested (lower than 20). The method can be used to

reduce unit cells attached to given hyperplanes.

1. Introduction

In a recent paper (Cayron, 2021), we proposed a method to

determine a unit cell attached to any hyperplane p. A hyper-

plane p is a plane of dimension N � 1 in a space of dimension

N. Its Miller indices pi permit it to be built geometrically

in the direct basis by considering its intersection points with

the ith axes (in 1=pi). Equivalently the letter p represents the

vector of coordinates pi in the reciprocal basis; this vector is

normal to the hyperplane. The unit cell attached to the

hyperplane p is made of one short vector b1 pointing to a node

of the first layer parallel to the plane p, i.e. such that

the scalar product ptb1 ¼ 1, and of N � 1 short vectors

fb2; . . . ; bi; . . . ; bNg lying in the plane p, i.e. such that the

scalar product ptbi ¼ 0, where ‘t’ means ‘transpose’. The first

vector is a solution of Bézout’s identity, and the N � 1 vectors

are solutions of the integer relation, both with the coordinates

pi. Even if the vectors fb1; . . . ; bi; . . . ; bNg determined by

the algorithm are already quite short, they can be reduced

even more, i.e. it is possible to find shorter vectors

fb01; . . . ; b0i; . . . ; b0Ng defining a smaller and more orthogonal

unit cell of the same volume associated with the same hyper-

plane p, i.e. fulfilling the same Bézout’s identity and integer

relation. Reducing the length of the vectors in a lattice is

related to the general problem called ‘lattice reduction’.

Let us explain it in a general way. Given a lattice L spanned

(freely) by N vectors bi, lattice reduction consists of finding

new relatively short, nearly orthogonal vectors b0i spanning the

same lattice L. The reduced and initial bases are linked by

integers zij such that b0i =
PN

j¼1 zijbj and L ¼ fZb0ig ¼ fZbjg,

where the {Z} means all linear combinations with integer

coefficients. The number of vectors cannot be larger than the

space dimension. The coefficients zij form a unimodular matrix

Z (integer matrix of determinant �1), and the relation

between the vectors of the bases is

ISSN 2053-2733

Received 26 January 2021

Accepted 21 October 2021

Edited by L. Palatinus, Czech Academy of

Sciences, Czech Republic

Keywords: lattice reduction; hyperplane; left

inverse; algorithm.

http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273321011037&domain=pdf&date_stamp=2022-01-01

b01

..

.

b0i

..

.

b0N

2
6666664

3
7777775
¼ Z

b1

..

.

bj

..

.

bN

2
6666664

3
7777775

with Z 2 ZNN and detðZÞ ¼ �1, where b0i and bj refer to the

vectors themselves, not to their coordinates. Strictly speaking,

it is the basis whose vectors generate the lattice that is reduced

at constant volume, and not the lattice itself since this remains

the same. The most popular algorithm to determine a reduced

basis is the Lenstra–Lenstra–Lovász (LLL) algorithm, which

relies on Gram–Schmidt orthogonalization (Appendix A). It is

usual in lattice reduction problems to present the vectors bj as

the rows of a matrix. In crystallography, we generally write the

coordinates in columns and keep the row notation for planes,

i.e. for vectors of the reciprocal space. In order to avoid any

confusion, we will write bt for a row vector b. With this

notation, in a space of dimension N, a vector b is an N � 1

matrix, and bt a 1� N matrix. All the vectors in this paper are

written in a Cartesian orthonormal basis and their coordinates

are integers. The relation between the reduced and initial

bases can be written in the form of a matrix product B0 ¼ ZB,

where

B0 ¼

b0 t
1

..

.

b0 t
i

..

.

b0 t
N

2
6666664

3
7777775

and

B ¼

bt
1

..

.

bt
i

..

.

bt
N

2
6666664

3
7777775

are matrices of ZNN. A typical low-dimensional example of

lattice reduction is the set of three vectors in three dimensions,

bt
1 ¼ ½1; 1; 1�; bt

2 ¼ ½�1; 0; 2� and bt
3 ¼ ½3; 5; 6�. They form the

matrix

B ¼

1 1 1

�1 0 2

3 5 6

2
4

3
5:

The reduced lattice basis is

B0 ¼

0 1 0

1 0 1

�1 0 2

2
4

3
5:

One can check that the three row vectors are b01 ¼

�4b1 � b2 þ b3, b02 ¼ 5b1 þ b2 � b3 and b03 ¼ b2. The integer

coefficients of linearity could be found by calculating

Z ¼ B0B�1.

A direct lattice reduction algorithm, such as LLL, permits

the lattice to be reduced but does not preserve the unit cell

attached to a given hyperplane p. We are thus looking for an

intermediate method such that the vector b01 continues to

point towards a node of the first layer, and the other vectors

fb02; . . . ; b0i; . . . ; b0Ng remain in the hyperplane p. An intuitive

solution to reduce b1 consists of applying a simple shear

parallel to the hyperplane p, as illustrated in Fig. 4 of Cayron

(2021). One could then think of applying the LLL algorithm to

reduce the other vectors fb2; . . . ; bi; . . . ; bNg lying in the

hyperplane p, but it is also possible to reverse the problem and

use the intermediate simple shear method to develop a simple

geometric algorithm of lattice reduction. This method, which

we call ‘cubification’, is different from LLL because it does not

require Gram–Schmidt orthogonalization. It is also well

adapted to determine a reduced unit cell attached to a

hyperplane p, as shown by Cayron (2021). It consists of

applying simple shears parallel to the directions and to the

hyperplanes of the lattice. Here, the term ‘shear’ should be

understood in its general meaning: for a vector space V and a

subspaceW, a shear of a vector v 2 V fixingW translates v in

a direction parallel toW. If V is the direct sum V ¼ W �W0,

we write v = w + w0, then the image of v by the shear S is

SðvÞ ¼ wþ w0 þMðw0Þ where M is a linear mapping fromW0

ontoW. Directional and hyperplanar shears correspond to the

case where the dimensions of the subspaces W are 1 and

N � 1, respectively.

In general, a parameter called ‘orthogonality defect’ is used

to evaluate the degree of reduction. It is defined by P=V where

P is the product of the norms of the basis vectors,

P ¼
Q

i�N kbik, and V is the volume of the cell formed by the

vectors, V ¼ detðb1; . . . ; bi; . . . ; bNÞ, which is an invariant of

the reduction process. Another parameter to evaluate the

norms could be S ¼
P

i�N kbik
2
¼
P

i�N bt
ibi. In this paper,

instead of using P=V, the degree of ‘cubicity’ of a basis

fb1; . . . ; bi; . . . ; bNg will be evaluated by calculating the ‘basis

rhombicity’ defined from the Euclidean scalar products

between the vectors:

R ¼
P
i;j

jMijj ¼
P
i�N

kbik
2
þ 2

P
i<j�N

kbt
ibjk ð1Þ

whereM is the metric tensor given

M¼

bt
1

..

.

bt
i

..

.

bt
N

2
6666664

3
7777775
ðb1; . . . ; bj; . . . ; bNÞ

¼

bt
1b1 . . . bt

1bj . . . bt
1bN

..

.
.

.
.

.

bt
ib1 . . . bt

ibj . . . bt
ibN

..

.
.

.
.

.

bt
Nb1 . . . bt

Nbj . . . bt
NbN

2
6666664

3
7777775
:

2 Cyril Cayron � A new method for lattice reduction Acta Cryst. (2022). A78, 1–9

research papers

The ‘basis rhombicity’ contains the information on both the

norms and the angles between the vectors. A lowest ‘rhom-

bicity’ indicates a more cubic cell. Note that the term ‘rhom-

bicity’ has a specific meaning in a branch of mathematics that

deals with symmetric second-rank tensors in three-dimen-

sional Euclidean space, but that is not the one given in the

present paper. The ‘basis rhombicity’ R was preferred to the

parameter P/V for two reasons:

(a) From a theoretical point of view, although it seems to be

common knowledge, we realized that minimizing the norms of

the vectors in high dimensions is not exactly equivalent to

improving the orthogonality between them. The reader can

look at the simple example in dimension 4 in Appendix B,

which presents two bases of the same lattice, with the same

norms S and P, but one with a better orthogonality, i.e. lower

R, than the other one. We will also show in Section 4.3 an

example in dimension 20 in which, for the same lattice, one

reduced basis has a better orthogonality (lower R) but a worse

norm (larger P and S) than another reduced basis.

(b) From a practical point of view, we noticed that the

‘cubification’ method leads to lower norms in terms of P or S

when R is used as driving criterion, and not P or S themselves.

Fig. 1(a) gives an example of lattice reduction with the LLL

algorithm. The matrix representing the basis to be reduced is

nearly the identity except that the last column containing the

Nth coordinates of the vectors is constituted of relatively high

integers. These types of matrices are often used because they

appear in the ‘knapsack problems’ (given a set of items, each

with a weight and a value, one has to determine the number of

each item to include in the knapsack so that the total weight

should not exceed a limit and the value is maximized).

Geometrically, the initial basis is highly elongated along the

Nth axis. Its initial values are R = 453988268, S = 61580172.

They decrease to R = 531, S = 99 with the LLL-reduced basis

given in Fig. 1(b).

The principle of directional shear will be presented in

Section 2. It helps to obtain a reduced lattice with significantly

lower R and S values, although higher than with LLL. The

hyperplanar shear will be explained in Section 3; it permits R

and S to be decreased further. In Section 4, it will be shown

how cycling directional and hyperplanar shears permits

values of R and S to be obtained that are comparable with

those of LLL.

2. Directional shearing

2.1. Lagrange’s division

Let us consider two vectors bi and bj such that kbik � kbjk.

We introduce the rational number q ¼ ðbt
ibjÞ=ðb

t
ibiÞ from the

orthogonal projection of bj on bi (Fig. 2). Practically, as in

LLL, q is encoded by a floating-point number. The vector qbi

is rational and can be approximated by the integer vector

bqebi, where bqe is the integer closest to q computed by

bqe ¼ intðroundðqÞÞ. The reduced vector r ¼ bj � bqebi

belongs to the lattice spanned by bi and bj, and its norm is such

that krk � kbjk if the coordinates of bi and bj are such that

jqj 	 1
2, i.e. bqe 6¼ 0. In the limit case jqj ¼ 1

2, the triangle made

by (bi, bj, r) is isosceles, i.e. krk ¼ kbjk. Note that, in some

cases, the norm of r that is lower than that of bj may even be

lower than that of bi. The vector r can be considered as the

remainder of the vector division of bj by bi.

Now, we consider a basis in N dimensions made of N

integer vectors fb1; . . . ; bi; . . . ; bNg initially sorted by

norms, from the lowest to the highest norms, i.e. such

that kb1k � . . . � kbik � kbiþ1k . . . � kbNk. The function

‘Lagrange’s division’ consists of applying vector divisions to

the pairs of vectors ðbi; bjÞ of the list. It starts with the vectors

bi ¼ b1 and bj ¼ b2. Two cases should be distinguished in the

algorithm: if bqe ¼ 0, nothing changes in the list and the next

pair of vectors ðbi; bjÞ is considered by iteration with a loop

with i containing a loop with j; and if bqe 6¼ 0, the list is

modified, and two algorithm variants are proposed:

Variant Append: the vectors bi and bj are deleted from the

list, and the vectors r and bi are appended at the end of the list.

Variant Insert: if krk � kbik, r replaces bi, and bi replaces bj

in the list; else, r replaces bj in the list.

The process is repeated recursively; the input for the

function ‘Lagrange’s division’ is the new list of vectors

research papers

Acta Cryst. (2022). A78, 1–9 Cyril Cayron � A new method for lattice reduction 3

Figure 1
Example of the LLL algorithm with a 20� 20 matrix representing a
list of 20 vectors whose coordinates are written in rows. (a) Input
list. (b) Output list determined with the function LatticeReduce of
Mathematica. (a) Basis before reduction; the values of the rhombicity
R ¼

P
N kbik

2
þ 2

P
i<j�N kb

t
ibjk and of the sum of the squares of the

norms S ¼
P

N kbik
2 are R = 453988268, S = 61580172. (b) Basis after

reduction; the parameters decreased to R = 531, S = 99.

(without sorting them). The recursion stops when all the

values bqe become null for all the pairs of vectors in the basis.

The method is quite similar to Lagrange’s division described

by Nguyen & Vallée (2010).

The variant Insert gives good results in a short time. The

rhombicity and the sum of the squares of the norms of the list

in Fig. 1(a) that were initially R = 453988268, S = 61580172 are

reduced to R = 540, S = 134. These values are not far from

those obtained with the LLL algorithm (R = 531, S = 99). With

Append, the list of Fig. 1(a) is reduced ‘only’ to R = 1199, S =

337, but, as will be shown in the next sections, this will leave

more action for the hyperplanar shearing, and better final

reduction will be obtained at the end of the process for

dimensions approximately N 	 15.

2.2. Simplification

Lagrange’s division reduces the vectors by pairs without

considering the basis as a whole. Now, if one accepts to slightly

but only temporarily degrade the value of S of the basis, the

rhombicity R can be further improved as follows. Let us

consider again a list of integer vectors fb1; . . . ; bi; . . . ; bNg

sorted by norms from the lowest to the highest norms. For a

pair of vectors bi and bj in the list such that kbik � kbjk, we

calculate the vector r ¼ bj � signðbt
ibjÞbi, where signðbt

ibjÞ ¼ 1

if bt
ibj > 0, �1 if bt

ibj < 0 and 0 if bt
ibj ¼ 0. Then, we calculate

whether or not replacing bi or bj by r allows the value of the

rhombicity R to be decreased. If the answer is positive, the

change is made. Here again, two algorithm variants are

proposed

Variant ‘Append’: if replacing bi by r allows the value of R

to be decreased, the vector bi is deleted and the vector r is

appended at the end of the list. If not, the vector bj is deleted

and the vector r is appended at the end of the list.

Variant ‘Insert’: if replacing bi by r allows the value of R to

be decreased, the vector bi is replaced by r at its position i;

else, bj is replaced by r at its position j. The new list of vectors

is then sorted again following the increasing norms.

The variant ‘Insert’ is chosen by default, except for random

matrices for which the variant ‘Append’ should be preferred,

as will be discussed in Section 4. The process of simplification

is repeated recursively until R cannot be reduced anymore.

Simplification permits the values obtained in Section 2.1 to be

decreased a little more. For the list of Fig. 1(a), from the lattice

reduced by Lagrange’s division with R = 1199, S = 337, the

lattice is further reduced to R = 1084, S = 330 by simplification

with the variant Insert. At this step, the rhombicity cannot be

further reduced, even by combining Lagrange’s division and

simplification. In the rest of the paper, the process described in

Section 2 will be called ‘directional shearing’.

3. Hyperplanar shearing

3.1. The hyperplane normal

Let us consider again a list of integer vectors

fb1; . . . ; bj; . . . ; bNg initially sorted by norms, i.e. such that

kb1k � . . . � kbjk � kbjþ1k . . . � kbNk. We isolate the first

vector b1 and the subspace of dimension N � 1 (hyperplane)

constituted by the vectors fb2; . . . ; bj; . . . ; bNg. The coordi-

nates of the integer vector p1 that is normal to this hyperplane

can be calculated as follows. We write the coordinates of

vectors b2; . . . ; bj; . . . ; bN in columns to form the N � ðN � 1Þ

matrix

S1 ¼

b1;2 . . . b1;j . . . b1;N

..

.
.

.
.

.

bi;2 . . . bi;j . . . bi;N

..

.
.

.
.

.

bN;2 . . . bN;j . . . bN;N

2
6666664

3
7777775

where bi;j means the ith coordinate of the vector bj.

If we insert in the matrix a first column made of any vector

of the set fb2; . . . ; bj; . . . ; bNg, let us say the vector bj, then the

new set of vectors becomes linearly dependent and the

determinant of the N � N matrix is null:

det

b1;j b1;2 . . . b1;j . . . b1;N

..

. ..
.

.
.

.
.

bi;j bi;2 . . . bi;j . . . bi;N

..

. ..
.

.
.

.
.

bN;j bN;2 . . . bN;j . . . bN;N

2
6666664

3
7777775
¼ 0:

Let us write this determinant by its cofactor expansion

along the first column. The minors, i.e. the determinants of

M1;k, the ðN � 1Þ � ðN � 1Þ submatrices of S1 obtained by

deleting the kth row, form a vector

p1 ¼

þ detðM1;1Þ

� detðM1;2Þ

..

.

�1ð Þkþ1detðM1;kÞ

..

.

�1ð ÞNþ1detðM1;NÞ

2
666666664

3
777777775

that fulfils the property pt
1bj ¼ 0; 8j 2 ½2; . . . ;N�: In other

words, p1 is the normal to the hyperplane fb2; . . . ; bj; . . . ; bNg

4 Cyril Cayron � A new method for lattice reduction Acta Cryst. (2022). A78, 1–9

research papers

Figure 2
Directional shear of bj along the direction bi. Case where (a)
bqe ¼ bðbt

i bjÞ=ðb
t
ibiÞe ¼ 3, and (b) bqe ¼ 1. The orthogonal projection

point is noted H and marked by a little orange star.

that we were looking for. Its norm equals the area of the

hypersurface formed by the vectors fb2; . . . ; bj; . . . ; bNg. The

reader can check that in three dimensions p1 ¼ b2 ^ b3. The

coordinates of p1 are the Miller indices.

Note 1. The calculation of the coordinates of p1 from the

determinants of the square matrices M1;k may appear

complicated and computationally expensive, and one may

think about other methods. It can be noticed that the coor-

dinates of p1 are the solution of pt
1S1 ¼ NullRowðN � 1Þ, the

null row vector, or equivalently St
1p1 ¼ NullColumnðN � 1Þ,

the null column vector, both of dimension N � 1. This system

of equations is underdetermined since it is constituted of

N � 1 equations with N unknown. It can be solved by matrix

inversion by imposing a specific value 0 or 1 to one of the

coordinates of p1, but such an approach becomes numerically

unstable and leads to incorrect solutions in high dimensions

N 	 20. A more classical way would be to compute Gaussian

elimination taking care with the choices of the pivot positions

to avoid instabilities, but the complexity is OðN3Þ, which is

comparable with that required to calculate N determinants of

square matrices of dimension N � 1.

3.2. Hyperplanar shear

Let us consider a cell of the lattice L attached to the

hyperplane p1 generated by the vectors fb2; . . . ; bj; . . . ; bNg,

i.e. pt
1bj ¼ 0; 8j 2 ½2; . . . ;N�: There are many equivalent cells,

but we are looking for a quasi-reduced one. First, we replace

the sublattice fb2; . . . ; bj; . . . ; bNg by its reduced form

fb02; . . . ; b0j; . . . ; b0Ng obtained by directional shearing, as

described in Section 2. If this reduction in dimension N � 1 is

not possible, the sublattice fb2; . . . ; bj; . . . ; bNg is not changed,

i.e. b0j ¼ bj: All the vectors b0j belong to the hyperplane p1; we

say that they are in the layer q = 0 of the plane p1. Only the

vector b1 points to a node of the layer q of the hyperplane p1

with q 2 Z and q> 0. Note that q = 1 for a unit cell. The set

fb1; b02; . . . ; b0j; . . . ; b0Ng is a cell attached to the hyperplane

(Cayron, 2021). Another vector of the lattice L pointing to the

layer q such as b1 but shorter than b1 can be determined as

follows. We note O the origin of the lattice, and Z the point

such that OZ ¼ b1, as illustrated in Fig. 3. We call H the

orthogonal projection of O on the layer q of the hyperplane p1.

It is such that OH k p1 and q ¼ pt
1OH ¼ pt

1b1. Thus,

OH ¼ ½ðpt
1b1Þ=ðp

t
1p1Þ�p1. Its coordinates are not integer but

remain rational.

The vector ZH ¼ �OZþOH is a vector of the hyperplane

p1, which means that it can be written as a linear combination

of the vectors fb02; . . . ; b0j; . . . ; b0Ng. In order to get its coordi-

nates, we use again the N � ðN � 1Þ matrix formed by writing

the reduced vectors in columns, i.e.

S01 ¼

b01;2 . . . b01;j . . . b01;N

..

.
.

.
.

.

b0i;2 . . . b0i;j . . . b0i;N

..

.
.

.
.

.

b0N;2 . . . b0N;j . . . b0N;N

2
6666664

3
7777775
:

The N � 1 local coordinates of ZH in the basis

fb02; . . . ; b0j; . . . ; b0Ng are given by ZHloc ¼ ðS
0
1Þ
�1
LeftZH where

ðS01Þ
�1
Left is the left inverse of the matrix S01. We recall that a left

inverse of a non-square matrix M is M�1
Left ¼ ðM

tMÞ�1Mt. The

vector ZHloc ¼ fz2; z3; . . . ; zNg is an N � 1-dimensional

rational vector in the N � 1 subspace. A lattice point Z0 close

to H that belongs to the same layer is given by

Z0Hloc ¼ fbz2e; bz3e; . . . ; bzNeg. The vector ZZ0loc =

ZHloc � Z0Hloc is calculated and re-expressed in the N-

dimensional space by ZZ0 ¼ S01
 ZZ0loc. The vector

b01 ¼ OZ0 ¼ OZþ ZZ0 is a reduced form of the vector b1.

At this step the cell fb1; . . . ; bj; . . . ; bNg attached to the

hyperplane p1 has been reduced; the new vectors defining this

cell are fb01; . . . ; b0j; . . . ; b0Ng. This is the method used by

Cayron (2021).

Note 2. The calculation of the N � 1 local coordinates of

ZH in the basis fb02; . . . ; b0j; . . . ; b0Ng from the N � ðN � 1Þ

matrix S01 may appear complicated and computationally

expensive, and one may think about other methods. One may

notice that the coordinates of ZH form an N � 1 vector X that

is the solution of S01X ¼ ZH. The system of equations is

overdetermined since it is constituted of N equations with

N � 1 unknown (the coordinates of X). One could ignore one

of the equations (i.e. remove one of the rows of S01) to solve the

system by matrix inversion, but such an approach becomes

numerically unstable and leads to incorrect solutions for high

dimension N 	 20. This problem is induced by the projection.

Let us explain it with an arbitrary example in three dimen-

sions. We consider b0 t
2 = [1211, 1423, 1] and b0 t

3 = [�8921, 2389,

1], two vectors nearly perpendicular to the z axis, and the

vector ZH that is in the plane (b02, b03). If we work with the

coordinates (x, y) of ZH to write it as a linear combination of

b02 and b03, a solution is found without any problem. However,

if the coordinates (x, z) or (y, z) of ZH are used, then the

system becomes ‘unbalanced’, and it would become comple-

tely unsolvable if 0 were chosen in place of 1 for the z coor-

dinates of the vectors b02 and b03. Geometrically, the instability

research papers

Acta Cryst. (2022). A78, 1–9 Cyril Cayron � A new method for lattice reduction 5

Figure 3
Hyperplanar shear parallel to p1. The lattice is ‘stratified’ into different
layers parallel to p1. The layer to which the vector b1 points is given by the
integer q ¼ pt

1b1. The hyperplanar shear is made by calculating the point
H (marked by a little orange star) which is the orthogonal projection of
the origin O onto the layer q. The node Z such that b1 ¼ OZ can be
translated towards another node Z0 closer to H (see text). The vector
b01 ¼ OZ0 has a lower norm and a better ‘orthogonality’ with the
hyperplane p1.

comes from the projection along a direction that makes the

rhombus (b02, b03) appear nearly on its edge, as a segment. To

avoid this problem, one could solve the overdetermined

system by Gaussian elimination, taking care with the choices

of the pivot positions to avoid instabilities, but the complexity

would be comparable with that required to calculate the left

inverses of matrices.

The function ‘hyperplanar shear’ works as follows. It starts

with the list fb1; . . . ; bj; . . . ; bNg and it tries to reduce b1 by a

shear on the hyperplane fb2; . . . ; bj; . . . ; bNg, as described

previously. If the basis rhombicity is reduced when

fb1; . . . ; bj; . . . ; bNg is substituted by fb01; b02; . . . ; b0j; . . . ; b0Ng,

the vector b01 is moved to the end of the list, and the function is

called again with fb02; . . . ; b0j; . . . ; b0N; b01g as input. If the

rhombicity is not reduced, the function keeps the initial list

fb1; . . . ; bj; . . . ; bNg and tries to reduce the vector b2 by a

shear on the hyperplane fb1; b3; . . . ; bj; . . . ; bNg etc. The

process stops when all the vectors bi of the list

fb1; . . . ; bj; . . . ; bNg are screened but none of the vectors b0i
permits the basis rhombicity to be reduced any further. This

series of hyperplanar shears will be called ‘hyperplanar

shearing’.

Both directional and hyperplanar shearing imply ortho-

gonal projections followed by numerical rounding in which

rational numbers are replaced by their closest integers, which

is actually very similar to the operations required in the

Gram–Schmidt procedure. The lattice of Fig. 1(a) that was

previously reduced by directional shearing becomes even

more reduced by hyperplanar shearing: the rhombicity and

sum of the squares of the norms decreased to R = 451 and S =

113. These values are closer to those

obtained by LLL, and they will be

improved even more by alternating

directional and hyperplanar shearing, as

detailed in the next section.

4. Cycling directional and
hyperplanar shearing

4.1. Methods and options

The directional and hyperplanar shearing steps can now be

repeated in cycles until the rhombicity cannot be decreased

anymore. This method is called ‘cubification’. There is not a

unique way to perform a cubification as it can be started by the

directional shearing or by the hyperplanar shearing. It also

depends on the variant of the algorithms chosen for Lagran-

ge’s division (Section 2.1) and for the simplification (Section

2.2). By trial and error, we could identify two cubification

methods (Table 1).

The chosen algorithm variant depends on the type of matrix

that is to be reduced (Table 2). We refer to ‘columnar matrix’

as a list of vectors whose matrix (the vectors are written in

rows) contains many zeros, and at least one column contains

many non-null and generally moderate integer values (here 3

or 4 digits). A typical example is the matrix given in Fig. 1(a).

We noticed that for matrices of dimensions approximately

N 	 15, Lagrange’s division in its Append variant gives better

results than with ‘Insert’. A ‘heterogeneous matrix’ is a matrix

that contains many zeros, and at least one row and one column

with many non-null and moderate integer values. We noticed

that for some cases of large heterogeneous matrices, with

approximately N 	 15, the first directional reduction may go

beyond the recursion limit of our computer; when this

happens, applying first a hyperplanar shearing solves the

problem. A ‘random matrix’ is a matrix whose values are

randomly computed with integers between 0 and 100. Limits

larger than 100, for example 1000, in large random matrices

N 	 15 lead to too high integer values in intermediate

calculations and error messages. A ‘columnar random matrix’

is here an identity matrix in which the last column is replaced

by random integers in the range 0–100. Columnar random

matrices are classified as random matrices and are treated with

method 2.

4.2. Computer program and comparisons

We wrote a computer program called Cubification in Python

3.8 using the Numpy library to perform the matrix calculations

(scalar products, matrix products, inverses etc.), generate the

random numbers, vectors and matrices, and calculate the

reduced lattices. All the results presented in the paper were

obtained with a laptop computer equipped with an Intel Core

i7-4600 CPU 2.1 GHz, 64-bit Windows system, with a RAM of

8 GB. The recursion limit in our Python program has been

fixed to 10 000. We compared the results obtained with our

program with those obtained by the LLL method computed in

6 Cyril Cayron � A new method for lattice reduction Acta Cryst. (2022). A78, 1–9

research papers

Table 1
Two cubification methods – the values of the options are given in Table 2.

Method 1 Method 2

Cubification (list, opt.): Cubification (list, opt.):
newlist = Sort_by_norm (list) newlist = Sort_by_norm (list)
newlist = Directional shearing (newlist, opt.) newlist = Hyperplanar shearing (newlist)
newlist = Sort_by_norm (list) newlist = Directional shearing (newlist, opt.)
newlist = Hyperplanar shearing (newlist) newlist = Hyperplanar shearing (newlist)
If R (newlist) < R (list): If R (newlist) < R (list):
Return Cubification (newlist, opt.) Return Cubification (newlist, opt.)

Else Return list Else Return list

Table 2
Method and option to be used depending on the type of square matrix.

We consider ‘large’ a matrix of dimension N 	 15. For some large
heterogeneous matrices a first step with hyperplanar shearing may be
required before starting method 1, as indicated in parentheses.

Type of list of
vectors

Cubification
method

Variant for the directional reduction

Lagrange’s division Simplification

Small columnar
matrix

Method 1 Insert Insert

Large columnar
matrix

Append Insert

Large heterogeneous
matrix

(Hyperplanar
shearing +)
method 1

Insert Insert

Random matrix Method 2 Append Append

Python 3 by Yonashiro (2020) in a program called OLLL. All

the OLLL calculations were made with � = 3/4. For specific

matrices, such as that of Fig. 1, we also used the function

ReduceLattice of Mathematica. On this example we checked

that OLLL and Mathematica give the same result; the only

difference is that the calculations are nearly instantaneous

with Mathematica, whereas they are longer (a few seconds)

with Python language (OLLL and Cubification). This shows

that it is difficult to compare the time efficiency of lattice

reduction algorithms with computer programs written by

different people in different languages. Thus, the execution

times will just be given for indication.

4.3. Results on non-random matrices

The cubification algorithm gives results quite similar to

those of LLL. For example, the lattice of Fig. 1(a) could be

reduced in three cycles (in 3.0 s); the output list of vectors is

given in Fig. 4. The final basis is characterized by R = 285, S =

87; these values are lower than those obtained by LLL (R =

531, S = 99). Souvignier (2021) showed that with the Schnorr–

Euchner variant of LLL it is possible to get a reduced basis

with R = 335, S = 83, and then, by computing the vectors of

norm 4, selecting 18 of them and associating them with two

vectors of norms 3, he could obtain a reduced basis with R =

294, S = 78. These solutions are significantly better than those

obtained by Mathematica. Compared with the result obtained

by cubification, they have a lower norm S (also a lower norm

P), but a larger rhombicity R. This example shows that

improving only the norms of the vectors does not always

permit a better orthogonality (and vice versa) to be obtained,

as also shown in Appendix B.

For heterogeneous matrices, we have tested only five

20� 20 matrices, and all of them show that LLL and cubifi-

cation give similar results (not shown here).

4.4. Results on random matrices

We have tested the performances of Cubification (method

2) and OLLL programs on columnar random matrices and full

random matrices. We used matrices of dimensions 10� 10,

12� 12 and 14� 14. Fifty matrices have been generated for

each type. The performances on the norms and orthogonalities

were measured by the reduction factors R(input)/R(output)

and S(input)/S(output). The higher the reduction factors, the

better the algorithm. The results are given in Table 3.

For these moderate dimensions, the reduction of the

rhombicity is systematically better with Cubification than with

the OLLL algorithm. The norms seem however less reduced

by Cubification for large full random matrices. The execution

times of Cubification are 0.1, 0.3 and 0.5 s for 10 � 10, 12 � 12

and 14 � 14 columnar random matrices, respectively, and 0.2,

0.7 and 1.3 s for 10 � 10, 12 � 12 and 14 � 14 full random

matrices, respectively. They are slightly shorter than with

OLLL. We also performed some experiments in higher

dimensions. The mean execution times are 14 and 30 s for

30 � 30 columnar and full random matrices, respectively. They

are shorter than with OLLL, but ten times longer than those

reported with other optimized Python programs (Papachris-

toudis et al., 2015). The way the algorithm is implemented, the

choice of types of variables, the use of different libraries, the

memory management, all play a crucial role in the execution

times. In this paper, the code was not optimized to reach the

best performances in execution times; its aim was only to show

that simple shears along directions and hyperplanes may be

interesting tools for lattice reduction.

5. Conclusion and perspectives

A method of lattice reduction called ‘cubification’ is proposed.

It is geometrically simple; it is based on the complementary

actions of directional shearing and hyperplanar shearing.

These two kinds of shears were initially introduced to reduce

the unit cells attached to given hyperplanes (Cayron, 2021). In

research papers

Acta Cryst. (2022). A78, 1–9 Cyril Cayron � A new method for lattice reduction 7

Figure 4
Cubification by method 1 of the lattice of Fig. 1(a). The vectors are
written in rows, as in Fig. 1. The reduced basis has values R = 285, S = 87.

Table 3
Reduction factors obtained on columnar and full random matrices of
dimensions 10� 10, 12� 12 and 14� 14 by testing 50 matrices.

The mean deviation estimated by various tests is for OLLL around� 20% for
a 10 � 10 matrix and it decreases down to �5% for a 14 � 14 matrix. It seems
to be larger for Cubification (�25% and �10%, respectively).

Reduction factor R(input)/R(output) S(input)/S(output)

Columnar random matrices 10� 10
OLLL 2780 1000
Cubification 3600 1060
Columnar random matrices 12� 12
OLLL 3120 1060
Cubification 4100 1090
Columnar random matrices 14� 14
OLLL 3630 1160
Cubification 4370 1070

Full random matrices 10� 10
OLLL 14.3 5.2
Cubification 16.9 5.4
Full random matrices 12� 12
OLLL 14.1 5.0
Cubification 15.2 4.6
Full random matrices 14� 14
OLLL 13.6 4.7
Cubification 14.3 4.1

contrast to LLL, the cubification algorithm does not require

the calculations of Gram–Schmidt bases. The ‘driving force’ of

the reduction is the ‘basis rhombicity’, a parameter that

encompasses the information on the norms and angles of the

basis vectors. A computer program called Cubification was

written in Python 3.8. The results are comparable with those of

LLL, at least up to moderate dimensions (N � 20Þ. The

Python program Cubification is freely available from the

author on request.

We foresee margins of progression for the algorithm of

cubification. The two methods described in Section 4.1 were

determined by trial and error; better strategies to alternate the

directional and hyperplanar shears seem possible, for example

by cross-calling the two processes without necessarily

screening all the vectors in the basis. We could also try to

generalize the N! N � 1 decrease of dimensions already

used in the hyperplanar shearing step with the help of

the left inverse matrices to work in spaces of dimensions

N � 1, N � 2 etc.

APPENDIX A
Brief overview of the LLL algorithm

The most popular algorithm to tackle the lattice reduction

problem was proposed nearly 40 years ago by Lenstra–

Lenstra–Lovász (Lenstra et al., 1982), and it is still considered

as the main reference in the domain. It should be noted that

the LLL algorithm does not give in general a Hermite–

Minkowski reduced basis for which the vectors have minimal

lengths (Ryshkov, 1976), but ‘only’ a basis made of short and

nearly orthogonal vectors that constitutes a good, approx-

imate solution that is very useful for many applications.

It was initially designed to give in polynomial-time a good

solution for factorizing polynomials with rational coefficients,

and it is also nowadays applied for finding rational approx-

imations to real numbers, and for solving the integer linear

programming problems in fixed dimensions; it is applied in

global positioning systems (GPS), data detection and

communication systems. It is so important that a complete

book has been devoted to it (Nguyen & Vallée, 2010). The

reader can also consult Wübben et al. (2011). We just give here

some of its key points. At the core of LLL is the Gram–

Schmidt orthogonalization routine in which one attaches

to any basis fb1; . . . ; bk; . . . ; bm�Ng an orthogonal basis

fb�1; . . . ; b�k; . . . ; b�mg by a series of projections b�k =

bk �
P

i<k ui;kbi with ui;k ¼ ðbk
 b
�
i Þ=ðb

�
i
 b

�
i Þ. The vectors

b�k are not integer anymore (i.e. ‘reticular’ in crystallographic

language); they remain however rational. Practically, as the

numerators and denominators may become huge numbers,

floating-point numbers are used for ui;k. The LLL algorithm

works in two steps repeated iteratively. The first step is the

quasi-orthogonalization. The vectors bi are replaced by

bi � bui;kebk, for k between 1 and i� 1, where bui;kemeans the

nearest integer of ui;k. The Gram–Schmidt basis should be

actualized during the process. The second step relies on a

criterion to determine whether or not the vectors bi and bi

should be swapped: the swap is made when kb�iþ1 þ ui;iþ1b�i k
2 <

�kb�i k
2, where � is a constant arbitrarily chosen between 1

4 and

1 (and fixed once for all). Often, the value � ¼ 3
4 is chosen. The

constant � influences the strength of reduction in the algo-

rithm and by that also the number of required iterations;

greater values lead to stronger reductions; it has an effect on

the final norms of the reduced vectors, and more precisely it

permits the product of the squared norms
QN

i¼1 kbik
2 to be

bound.

APPENDIX B
Example of a lattice with two reduced bases of the
same norms but different orthogonalities

This appendix provides an example showing that minimizing

the norms of the vectors of a lattice does not necessarily

permit their orthogonality to be improved. Let us consider the

lattice spanned by the four vectors fb1; b2; b3; b4g whose

coordinates are written in rows by

B ¼

1 1 0 0

0 1 1 0

0 1 0 1

1 0 1 1

2
664

3
775:

The squares of the norms of the four vectors are 2, 2, 2, 3.

The parameters that can be used to evaluate the ‘norm’ of the

basis B are the sum of the squares of norms SðBÞ ¼ 9 and the

products of the squares of norms P2ðBÞ ¼ 24. This basis is

already reduced if one considers only the norm of B. The

output of the LLL algorithm is thus the same basis. However,

the same lattice may also be given by the vectors b01 ¼ b1,

b02 ¼ b1 � b2, b03 ¼ b3, b04 ¼ b3 � b4, written in rows:

B0 ¼

1 1 0 0

1 0 �1 0

0 1 0 1

�1 1 �1 0

2
664

3
775:

The squares of the norms of the four vectors are 2, 2, 2, 3,

and the new basis B0 is characterized by the parameters

SðB0Þ ¼ 9 and P2ðB0Þ ¼ 24. The two bases B and B0 generate

the same lattice and have the same ‘norm’, but their ortho-

gonalities are different. Their metric tensors are

M Bð Þ ¼

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 3

2
664

3
775

and

B0ð Þ ¼

2 1 1 0

1 2 0 0

1 0 2 1

0 0 1 3

2
664

3
775;

respectively. Their rhombicities are RðBÞ ¼ 21 and

RðB0Þ ¼ 15, respectively. The basis B0 is thus more ‘ortho-

gonal’ than the basis B. This example shows that the term

‘orthogonality defect’ usually attributed to the parameter P/V

may not be very appropriate. Since the value R� S gives the

8 Cyril Cayron � A new method for lattice reduction Acta Cryst. (2022). A78, 1–9

research papers

Euclidean scalar products of the vectors with the other ones,

the parameter ðR� SÞ=S seems better adapted to characterize

the ‘orthogonality defect’. The cubification method described

in the paper aims at reducing both the norms and the ortho-

gonalites of the vectors, which is why the rhombicity R was

used as a driving force in the algorithm. The basis B0 of the

example was found by cubification.

Acknowledgements

Professor Roland Logé is warmly acknowledged for the

freedom given to our research that sometimes goes beyond

metallurgy. I would also like to thank the reviewers, and

particularly Professor Souvignier, who showed me the effi-

ciency of the Schnorr–Euchner method on the same examples

with the same parameters R and S as those introduced in the

paper. The paper was modified and improved thanks to his

comments. Professor Palatinus is also thanked for his advice

and for putting me in contact with Professor Souvignier.

Funding information

Open access funding provided by Ecole Polytechnique

Federale de Lausanne.

References

Cayron, C. (2021). Acta Cryst. A77, 453–459.

Lenstra, A. K., Lenstra, H. W. Jr & Lovász, L. (1982). Math. Ann. 261,
515–534.

Nguyen, P. Q. & Vallée, B. (2010). The LLL Algorithm. Survey and
Applications. Berlin, Heidelberg: Springer-Verlag.

Papachristoudis, D. G., Halkidis, S. T. & Stephanides, G. (2015). Int. J.
Appl. Comput. Math. 1, 327–342.

Ryshkov, S. S. (1976). J. Math. Sci. 6, 651–671.

Souvignier, B. (2021). Personal communication.

Wübben, D., Seethaler, D., Jaldén, J. & Matz, G. (2011). IEEE Signal
Process. Mag. 28, 70–91.

Yonashiro, N. (2020). OLLL, a Python3 Implementation of LLL,
available at https://github.com/orisano/olll.

research papers

Acta Cryst. (2022). A78, 1–9 Cyril Cayron � A new method for lattice reduction 9

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5009&bbid=BB10

