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A simplified relationship between the modified
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The coincidence site lattice (CSL) is important for characterizing the structure

and energy state of grain boundaries in polycrystalline materials. A simplified

relationship between the modified O-lattice and the corresponding rotation

matrix is proposed to establish a general formula for the CSL and the near

coincidence site lattice (NCSL) in Bravais lattice systems. The general formula

paves the way to computer simulation and crystallographic analysis of grain

boundaries.

1. Introduction

The coincidence site lattice (CSL) concept was derived by

Ranganathan on the hypothesis that there are certain common

sites located on a single lattice of larger cell dimensions

compared with two adjacent identical crystal lattices related

by a special rotation operation (Ranganathan, 1966). Tables of

CSLs in cubic lattices have been reported independently by

Warrington & Bufalini (1971), Bleris & Delavignette (1981)

and Grimmer (1984). The rotation operation and multiplicity

of a CSL are determined by the rotation axis [uvw] and the

rotation angle � (Ranganathan, 1966). The CSL formulation

was then characterized mathematically for the general case by

Santoro & Mighell (1973). The CSL concept was also

extended into reciprocal space to propose displacement shift

complete (DSC) lattices (Grimmer et al., 1974). More

complicated systems, such as face- and body-centred cubic

crystals, have been discussed in terms of near coincidence site

lattices (NCSLs) and DSC lattices for cubic systems based on

the O-lattice concept (Grimmer et al., 1974; Bonnet et al., 1981;

Balluffi et al., 1982) and in terms of NCSLs for hexagonal

systems (Bleris et al., 1982).

Ranganathan’s formula gives a simple and fast criterion for

the determination of the existence of a CSL for a given axis or

a given multiplicity � of a simple cubic crystal. Grimmer’s

method has the advantage of being a more systematic method

for all cubic systems. Bleris’s new formulation produced a

systematic generation of CSLs, which was successfully

extended to the hexagonal system. However, the tables of

CSLs reported in literature were limited to the cubic system

(Warrington & Bufalini, 1971) and the hexagonal system

(Bonnet et al., 1981). The general treatment for an arbitrary

system provided by Santoro showed no details for CSLs for

different Bravais systems (Santoro & Mighell, 1973) owing to

the difficulty of finding perfect superimposed lattice sites from

two correlated non-cubic lattices.

ISSN 2053-2733

Received 14 June 2021

Accepted 5 January 2022

Edited by L. Palatinus, Czech Academy of

Sciences, Czech Republic

Keywords: grain boundaries; phase transitions;

coincidence site lattice; CSL; near coincidence

site lattice; NCSL; rotation matrix; O-lattice.

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273322000171&domain=pdf&date_stamp=2022-02-18


In the last few decades, some new formulations have been

proposed for CSLs of cubic structures, such as the geometric

method for two-dimensional (2D) CSLs (Shamsuzzoha &

Rahman, 2012), the 3D CSL method based on Grimmer’s

reciprocity theorem and the reduction algorithm (Lord, 2006).

However, it is accepted that there are some major difficulties

in extending the CSL concept from cubic to non-cubic crystals

(Fortes, 1977), although the new models mentioned above are

still valid for pure cubic, hexagonal and even some monoclinic

systems. For instance, NCSLs for hexagonal structures were

investigated by Bonnet et al. (1981) for a range of metals for

the [0001], ½2�11�110� and ½01�110� zone axes and NCSLs for

monoclinic structures were initially considered by Gertsman et

al. (1996).

A general and easy-to-use model of NCSLs and CSLs is

essential for computer simulations. A few applications are the

simulation of hetero-epitaxial interface structures (Sayle et al.,

1993), the three-dimensional interface between �-Ti and �-Ti

of titanium alloys (Miyano et al., 2000), and orientation rela-

tionships and interface structure of dual-phase alloys (Miyano

& Ameyama, 2000).

As most of the reported CSL and NCSL models have been

generated from simple cubic lattices, it was necessary to build

a model to meet the requirements of more complicated, mixed

structures, such as base-centred, body-centred and face-

centred lattices. Although Grimmer proposed a method to

allow calculating the CSL and NCSL for two arbitrary lattices

(Grimmer, 1989), it started from the reciprocal lattice. This

method was based on phase transformations, so that a

computer-aided automatic method could deduce possible

CSLs and NCSLs of a phase transformation system.

In early work on grain boundary analysis by Karakostas et

al. (1979), a modified O-lattice method was proposed to

generate a CSL and DSC lattice for an arbitrary Bravais

lattice. This is a simple and relatively easy to use model for

CSLs. A crystal I in a coordinate system (denoted as W1) is

transformed to a crystal II by a rotation matrix R = [p1 p2 p3]/

�, where p1, p2 and p3 are the direction cosines of the reference

coordination system (denoted as V1), and � is the rotation

angle of the rotation axis [uvw]. A reference system has its Z

axis parallel to the rotation axis and the other two axes lying in

the reference plane. Then the modified O-lattice vectors x(O)

in a cubic lattice are expressed in W1 as

xðOÞ ¼

xO
1

xO
2

xO
3

0
B@

1
CA

¼
1

2

1þ p2
1 p1p2 þ p3 cot �2 p1p3 � p2 cot �2

p1p2 � p3 cot �2 1þ p2
2 p2p3 þ p1 cot �2

p1p3 þ p2 cot �2 p2p3 þ p1 cot �2 1þ p2
3

0
B@

1
CA

t1

t2

t3

0
B@

1
CA

¼ W � t: ð1Þ

W denotes the conversion matrix of the O-lattice, and t are the

modified translation vectors.

This is a modified O-lattice because the translation vectors t

in equation (1) are not lattice translation vectors bL for crystal

I. It is a new lattice defined by two vectors in the reference

plane and the third vector parallel to the rotation axis with

length equal to the modulus of the rotation axis, i.e., the

distance between two adjacent lattice points lying on this axis.

That is to say, the vector bL is use for generating the real

O-lattice while t is used for modified O-lattice calculations. For

example, the translation vector of crystal I and the vector for

the modified O-lattice rotation around [111] are

bL ¼

1 0 0

0 1 0

0 0 1

0
@

1
A; t ¼

1 1 1
�11 1 1

0 �22 1

0
@

1
A: ð2Þ

This can be extended to a non-cubic lattice by applying the

transformation matrix S from the crystal system being inves-

tigated to the orthonormal reference system,

xðOÞ ¼ S�1US � t: ð3Þ

However, equation (1) is complicated and not easy to use,

especially in the case of low-symmetry lattices, say for hexa-

gonal, orthorhombic and monoclinic structures. It would be

very helpful to find a way to simplify this formulation.

In this work it is found that there is a direct link between the

modified O-lattice and the rotation matrix R. A simplified

O-lattice formula for CSLs is developed accordingly. In the

following, the proposed formula is presented first, followed by

details of how it was developed and applications to real cases

of CSLs of high-symmetry lattices and NCSLs of medium- and

low-symmetry lattices.

2. Simplification of the modified O-lattice

For a rotation matrix R = [p1, p2 p3]/�, let a and b be the values

of cos � and sin �, where � is the rotation axis and I represents

the unit matrix, i.e.,

I ¼

1 0 0

0 1 0

0 0 1

0
@

1
A; a ¼ cos �; b ¼ sin �: ð4Þ

Then the conversion matrix W for generating the modified

O-lattice matrix shown in equation (1) can be solved as

W ¼
R�1 � 2a� 1ð ÞI

2 1� að Þ
; xðOÞ ¼ W � t: ð5Þ

For non-cubic lattices, this becomes

W ¼
S�1R�1S � 2a� 1ð ÞI

2 1� að Þ
; xðOÞ ¼ W � t: ð6Þ

The simplified O-lattice formulae shown in equations (5) and

(6) suggest that the modified O-lattice is the product of a

rotation matrix inversion with a translation matrix, which is

then rescaled. Thus, the simplified O-lattice formula illustrates

a clear geometric meaning and is easy to calculate by hand or

by computer.
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3. Theoretical development of the simplified O-lattice
of a CSL for a cubic lattice

For a given cubic crystal I, the three basis axes are parallel to a

reference Cartesian coordinate system W1 and are denoted as

X, Y and Z. The CSL generated by a lattice rotation around an

axis [uvw] with a rotation angle � can be obtained by the

O-lattice method. Note that the 3D O-lattice of a pure rota-

tion matrix has no roots, as the determinant of the total strain

is zero:

I � R�1
�� �� ¼ 0: ð7Þ

This property makes it inconvenient to produce an O-lattice

from a pure rotation matrix by following the classical O-lattice

concept. To find the solution, it is necessary to calculate a two-

dimensional case, which is deduced from the 3D case.

3.1. The modified O-lattice generated by the O-lattice
method

Consider a rotation operation around an arbitrary axis u as

[uvw] with arbitrary angle �. The rotation matrix R has the

general form

R ¼

P2
1 1� að Þ þ a P1P2 1� að Þ � P3b P1P3 1� að Þ � P2b

P2P1 1� að Þ þ P3b P2
2 1� að Þ þ a P2P3 1� að Þ � P1b

P3P1 1� að Þ � P2b P3P2 1� að Þ þ P1b P2
3 1� að Þ þ a

0
B@

1
CA;
ð8Þ

where the parameters a and b were defined in Section 2. The

rotation axis [uvw] is unitized as [p1, p2, p3] where

p1 ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 þ w2
p ; p2 ¼

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2
p and

p3 ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 þ w2
p : ð9Þ

Consider a new coordinate system V1, where Z0 k ½uvw�,

X0 k ½�w 0 u� and Y0 k ½uv �ðu2 þ w2Þ vw�. The rotation

matrix that converts the old system W1 to the new system V1 is

C ¼

� wffiffiffiffiffiffiffiffiffi
u2þw2
p 0

uvffiffiffiffiffiffiffiffiffi
u2þw2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2þw2
p � u2þw2ffiffiffiffiffiffiffiffiffi

u2þw2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2þw2
p

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2þw2
p

0
BB@

uffiffiffiffiffiffiffiffiffi
u2þw2
p

vwffiffiffiffiffiffiffiffiffi
u2þw2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2þw2
p

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p

1
CA:
ð10Þ

In this new system V1, the original 3D rotation can be

simplified to a 2D rotation around the Z0 axis with the same

rotation angle �. The rotation matrix Q for [001]/� in two

dimensions is

Q ¼
cos � � sin �
sin � cos �

� �
: ð11Þ

The 2D O-lattice solution gives

ðI �Q�1
ÞxðOÞ

0

¼ TxðOÞ
0

¼ t: ð12Þ

t in the V1 system is identical to bL,

tV1
¼

1 0 0

0 1 0

0 0 1

0
@

1
A; ð13Þ

and the O-lattice in 2D space is

xðOÞ
0

¼ T�1t ¼
1
2

1
2 cotð�=2Þ

� 1
2 cotð�=2Þ 1

2

� �
t

¼
1

2

1 cotð�=2Þ

� cotð�=2Þ 1

� �
: ð14Þ

The multiplicity of the O-lattice for the primitive cubic unit

cell is

�0 ¼ xðOÞ
0

��� ��� ¼ 1
2

1
2 cotð�=2Þ

� 1
2 cotð�=2Þ 1

2

�����
�����

¼
1

4
1þ cot2ð�=2Þ
� �

¼
1

2 1� cos �ð Þ
¼

1

2 1� að Þ
: ð15Þ

Since a CSL is a superlattice of the O-lattice, the multiplicity �
of a CSL must be an integer (n) times that of the O-lattice:

�0 ¼
1

2 1� cos �ð Þ
¼

�

n
; � ¼

n

2 1� cos �ð Þ

or n ¼ 2� 1� cos �ð Þ: ð16Þ

By applying a reverse rotation C�1,

xðOÞ ¼ C�1xðOÞ
0

Ct; ð17Þ

xðOÞ
0

will be converted into the O-lattice x(O) in three dimen-

sions again:

xðOÞ ¼
1

2

1þ u2

u2þv2þw2
uv

u2þv2þw2 þ
w cot �=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p

uv
u2þv2þw2 �

w cot �=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p 1þ v2

u2þv2þw2

uw
u2þv2þw2 þ

v cot �=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p vw

u2þv2þw2 �
u cot �=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p

0
BB@

uw
u2þv2þw2 �

v cot �=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p

vw
u2þv2þw2 þ

u cot �=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2
p

1þ w2

u2þv2þw2

1
CCAt:

ð18Þ

t in the W1 system is

tW1
¼

�w uv u

0 �u2 � w2 v

u vw w

0
@

1
A: ð19Þ

Replacing the directional cosine values shown in equation (9),

equation (18) can be rewritten as
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xðOÞ ¼

1

2

1þ P2
1 P2P1 þ P3 cotð�=2Þ P3P1 � P2 cotð�=2Þ

P1P2 � P3 cotð�=2Þ 1þ P2
2 P3P2 þ P1 cotð�=2Þ

P1P3 þ P2 cotð�=2Þ P2P3 � P1 cotð�=2Þ 1þ P2
3

0
B@

1
CAt

¼ Wt:

ð20Þ

This is the same as equation (1). To validate the equation,

consider the 2D case. When u = v = 0 and w = 1, equation (20)

gives

xðOÞ ¼
1

2

1 cotð�=2Þ 0

� cotð�=2Þ 1 0

0 0 1

0
@

1
At: ð21Þ

This is the same as equation (14).

3.2. The modified O-lattice generated by re-forming the
rotation matrix

We can, however, re-form the rotation matrix and obtain

the same modified O-lattice with some interesting findings.

The inversion of the rotation matrix R can be expressed as

R�1
¼

P2
1 1� að Þ þ a P2P1 1� að Þ þ P3b P3P1 1� að Þ � P2b

P1P2 1� að Þ � P3b P2
2 1� að Þ þ a P3P2 1� að Þ þ P1b

P1P3 1� að Þ þ P2b P2P3 1� að Þ � P1b P2
3 1� að Þ þ a

0
B@

1
CA:
ð22Þ

It can be further dissociated into the following form:

R�1
¼ 1� að Þ

�

1þ P2
1 P2P1 þ P3 cotð�=2Þ P3P1 � P2 cotð�=2Þ

P1P2 � P3 cotð�=2Þ 1þ P2
2 P3P2 þ P1 cotð�=2Þ

P1P3 þ P2 cotð�=2Þ P2P3 � P1 cotð�=2Þ 1þ P2
3

0
B@

1
CA

þ ð2a� 1Þ

1 0 0

0 1 0

0 0 1

0
B@

1
CA: ð23Þ

When revisiting equation (20), it is interesting to find that the

matrix for generating the O-lattice from a pure rotation has a

very similar form to that of the rotation matrix. Substituting

the known items in equation (20) into equation (23), it then

reads

R�1 ¼ 2 1� að ÞWþ ð2a� 1ÞI; ð24Þ

from which the conversion matrix W for generating the

modified O-lattice can be solved:

W ¼
R�1 � 2a� 1ð ÞI

2 1� að Þ
: ð25Þ

This equation reveals a simplified relationship between the

modified O-lattice for a CSL and the rotation matrix. That

means a CSL can now be mathematically re-formed by using

the rotation matrix directly without encountering the issue of

zero determinant shown in equation (7). It can be graphically

illustrated as in Fig. 1 for example, which shows the geometric

relationships between a unit cell, its rotated cell, the O-lattice

and the CSL (�5 = [100]/36.87�) of a cubic crystal.

3.3. Extension into general Bravais lattice systems

Following the mathematical method used in this work, it is

not difficult to extend the above inferences to all the seven

lattice systems. It is known that the Niggli reduced cell

contains only one lattice site occupied by an atom or a group

of atoms. The six lattice parameters of an arbitrary Niggli

reduced cell are a0, b0, c0, �, � and �. The a axis is parallel to

the X axis and the plane determined by the cross product of

the a and b axes is parallel to the XOY plane of the reference

coordinate system. For an arbitrary triclinic crystal, its trans-

formation matrix S is expressed as

S ¼

S11 S12 S13

0 S22 S23

0 0 S33

0
@

1
A ¼ a b cos � c cos�

0 b sin � c ðcos ��cos� cos �Þ
sin �

0 0 V
ab sin �

0
@

1
A
ð26Þ

and its inverse is

S�1
¼

1
S11
�

S12

S11S22
�

S22S13�S12S23

S11S22S33

0 1
S22

�
S23

S22S33

0 0 1
S33

0
BB@

1
CCA

¼

1
a �

cos �
a sin � �

bc cos��cos � cos �ð Þ

V sin �

0 1
b sin � �

acðcos��cos � cos �Þ
V sin �

0 0 ab sin �
V

0
BB@

1
CCA; ð27Þ

where the volume of the unit cell of crystal I is

V ¼ abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a� cos2 �� cos2 � þ 2 cos a cos� cos �

p
:

ð28Þ

The modified O-lattice conversion matrix W can be solved as
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Figure 1
The 2D geometric relationships between a unit cell, the CSL rotation cell,
the O-lattice and the CSL in a cubic crystal, showing that the CSL sites
are the superimposed sites of the unit cell, the rotation cell and the
O-lattice.



W ¼ S�1 R�1 � 2a� 1ð ÞI

2 1� að Þ
S ¼

S�1R�1S � 2a� 1ð ÞI

2 1� að Þ
: ð29Þ

This indicates that finding a CSL for a non-cubic lattice

requires modifying the rotation matrix by using its translation

matrix. Note that the final result is expressed in the Bravais

lattice basis, not in the reference basis. This is convenient and

useful because a conversion between the reference coordi-

nation system and the Bravais lattice system is omitted in this

formula.

4. Obtaining a CSL from the simplified O-lattice

Since the CSL is a superlattice of the simplified O-lattice, it is

convenient to obtain the CSL by using a linear combination of

the vectors of the O-lattice with a constraint that the volume

should be n times that of the O-lattice unit cell. The integer

number n is determined by equation (16). It is interesting to

note that there is no quantitatively analytical solution to this

step yet, although it looks quite simple. A few approaches to

finding CSL vectors from a rotation matrix or an O-lattice

have been reported and used (Grimmer et al., 1974). However,

they are based on trial-and error methods and careful

choosing of intermediate parameters. Loquias & Zeiner

(2010) gave a complete mathematical solution in terms of

coincidence isometries of a shifted square lattice, but this was

too difficult to be understood and accepted by materials

scientists. This suggests possible future development of the

CSL method.

5. Case studies

This section will demonstrate a few examples of CSL and

NCSL calculations to validate the simplified O-lattice

proposed above and to explore its applicability. The lattice-

parameter ratios of the crystals in the following cases are

denoted as LPRs. As is well known, CSLs can be found in a

high-symmetry lattice, such as cubic and hexagonal, with

specific LPRs. However, this is not always true for low-

symmetry ones. It appears from the literature that the prop-

erties of the CSL (e.g. the � value) are not so closely related

with the properties of the grain boundary for low-symmetry

cases (Gertsman & Szpunar, 1999). Consequently, the

concepts of a near coincidence site lattice (NCSL) and a

constraint coincidence site lattice (CCSL) were introduced

shortly after the difficulty of finding a CSL in a low-symmetry

lattice was encountered.

The examples for low-symmetry lattices, such as ortho-

rhombic and monoclinic lattices, are presented here to vali-

date the simplified relationship between an NCSL rotation

matrix and the corresponding O-lattice to the relaxed lattice.

The other Bravias lattices are omitted here because a trigonal

lattice can be treated as a hexagonal one, a tetragonal lattice is

a special case of an orthorhombic one, and it is rarely easy to

find a CSL or an NCSL for a triclinic lattice. However, the

following is not an attempt to claim that a CSL can always be

found in a low-symmetry lattice.

5.1. Case I: a R5 CSL of [100]/36.87��� in a simple cubic
structure (LPR a0)

For a simple cubic structure, a rotation of 36.87� around the

[100] axis generates a �5 CSL. The generation parameter a =

cos 36.87� = 4/5. The rotation matrix R is

R ¼
1

5

4 �33 0

3 4 0

0 0 5

0
@

1
A: ð30Þ

The conversion matrix W reads

W ¼
R�1 � 2a� 1ð ÞI

2 1� að Þ
¼

1
5

4 3 0

�33 4 0

0 0 5

0
B@

1
CA� 8

5� 1
� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA

2 1� 4
5

� �

¼

1
2

3
2 0

� 3
2

1
2 0

0 0 1

0
B@

1
CA; ð31Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 10 1�

4

5

� �
¼ 2 ð32Þ

and

xðOÞ ¼ Wt ¼

1
2

3
2 0

� 3
2

1
2 0

0 0 1

0
@

1
A 1 0 0

0 1 0

0 0 1

0
@

1
A ¼

1
2

3
2 0

� 3
2

1
2 0

0 0 1

0
@

1
A:
ð33Þ

The CSL vectors are obtained by the vector operation on the

condition that the unit cell of the modified O-lattice is multi-

plied by n = 2:

x1 ¼ 1 � xO
1 þ 1 � xO

2 þ 0 � xO
3

x2 ¼ �1 � xO
1 þ 1 � xO

2 þ 0 � xO
3

x3 ¼ 0 � xO
1 þ 0 � xO

2 þ 1 � xO
3

8<
: ; ð34Þ

CSL ¼ xðOÞ
1 �11 0

1 1 0

0 0 1

0
B@

1
CA ¼

1
2

3
2 0

� 3
2

1
2 0

0 0 1

0
B@

1
CA

1 �11 0

1 1 0

0 0 1

0
B@

1
CA

¼

2 1 0

�11 2 0

0 0 1

0
B@

1
CA: ð35Þ

5.2. Case II: a R7 CSL of [111]/38.21��� in a simple cubic
structure (LPR a0)

For a simple cubic structure, a rotation of 38.21� around the

[111] axis generates a �7 CSL. The parameter a = cos 38.21� =

11/14. The rotation matrix R is

R ¼
1

7

6 �22 3

3 6 �22
�22 3 6

0
@

1
A: ð36Þ

The conversion matrix W reads
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W ¼
R�1 � 2a� 1ð ÞI

2 1� að Þ

¼

1
7

6 3 �22

�22 6 3

3 �22 6

0
B@

1
CA� 22

14� 1
� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA

2 1� 11
14

� �

¼

2
3 1 � 2

3

� 2
3

2
3 1

1 � 2
3

2
3

0
B@

1
CA; ð37Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 14 1�

11

14

� �
¼ 3 ð38Þ

and

xðOÞ ¼ Wt ¼

2
3 1 � 2

3

� 2
3

2
3 1

1 � 2
3

2
3

0
B@

1
CA

1 1 1

�11 1 1

0 �22 1

0
B@

1
CA

¼

� 1
3 3 1

� 4
3

�22 1
5
3

�11 1

0
B@

1
CA: ð39Þ

Finally, the CSL vectors are obtained in the same way and on

the condition that the unit cell of the modified O-lattice is

multiplied by n = 3:

x1 ¼ 1 � xO
1 þ 0 � xO

2 þ
1
3 � x

O
3

x2 ¼ �
1
2 � x

O
1 þ

1
2 � x

O
2 þ

1
3 � x

O
3

x3 ¼ 0 � xO
1 þ 0 � xO

2 þ 1 � xO
3

8<
: ; ð40Þ

CSL ¼ xðOÞ
1 � 1

2 0

0 1
2 0

1
3

1
3 1

0
B@

1
CA

¼

� 1
3 3 1

� 4
3

�22 1
5
3

�11 1

0
B@

1
CA

1 � 1
2 0

0 1
2 0

1
3

1
3 1

0
B@

1
CA

¼

0 2 1

�11 0 1

2 �11 1

0
B@

1
CA: ð41Þ

5.3. Case III: a R17 CSL of [100]/86.63��� in a simple hexagonal
structure [LPR (c0/a0)

2 = 8/3]

For a simple hexagonal structure with LPR (c0/a0)2 = 8/3, a

rotation of 86.63� around the [100] axis generates a �17 CSL

where the parameter a = cos 86.63� = 1/17. The rotation matrix

R is

R ¼
1

17

17 0 0

0 1 12
ffiffiffi
2
p

0 �12
ffiffiffi
2
p

1

0
@

1
A: ð42Þ

The transformation matrix S and its inverse for a hexagonal

structure are

S ¼ a

1 � 1
2 0

0
ffiffi
3
p

2 0

0 0
ffiffi
8
3

p
0
@

1
A; S�1

¼
1

a

1 1ffiffi
3
p 0

0 2ffiffi
3
p 0

0 0
ffiffi
3
8

p
0
B@

1
CA: ð43Þ

The conversion matrix W reads

W ¼
S�1R�1S � 2a� 1ð ÞI

2 1� að Þ

¼

"
1

17

1 1ffiffi
3
p 0

0 2ffiffi
3
p 0

0 0
ffiffi
3
8

p
0
BB@

1
CCA

17 0 0

0 1 12
ffiffiffi
2
p

0 �12
ffiffiffi
2
p

1

0
B@

1
CA

1 � 1
2 0

0
ffiffi
3
p

2 0

0 0
ffiffi
8
3

p
0
B@

1
CA

�
2

17
� 1

� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA
#�

2 1�
1

17

� �

¼

1 � 1
4

1
2

0 1
2 1

0 � 9
32

1
2

0
B@

1
CA; ð44Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 34 1�

1

17

� �
¼ 32 ð45Þ

and

xðOÞ ¼ Wt ¼

1 � 1
4

1
2

0 1
2 1

0 � 9
32

1
2

0
@

1
A 1 0 1

2 0 0

0 1 0

0
@

1
A ¼

1
2

1
2

1
2

1 1 0

� 9
16

1
2 0

0
@

1
A:
ð46Þ

Finally, the CSL vectors are obtained by the operation on the

condition that the unit cell of the modified O-lattice is multi-

plied by n = 32:

x1 ¼ 8 � xO
1 þ 1 � xO

2 þ 1 � xO
3

x2 ¼ 0 � xO
1 þ 2 � xO

2 þ 0 � xO
3

x3 ¼ 0 � xO
1 þ 0 � xO

2 þ 2 � xO
3

8<
: ; ð47Þ

CSL ¼ xðOÞ
8 0 0

1 2 0

1 0 2

0
B@

1
CA ¼

1
2

1
2

1
2

1 1 0

� 9
16

1
2 0

0
B@

1
CA

8 0 0

1 2 0

1 0 2

0
B@

1
CA

¼

5 1 1

9 2 0

�44 1 0

0
B@

1
CA: ð48Þ

5.4. Case IV: a R3 CSL of [010]/48.3��� in the orthorhombic
LiFePO4 structure [LPR (a0/b0/c0)

2 = 80/25/16]

It is not very common in the literature to investigate a CSL

or an NCSL in orthorhombic crystals. What has been studied

is the notable YBCO superconductor. However, this ortho-

rhombic structure has a pseudo-tetragonal lattice with lattice

parameters a0 = 3.82, b0 = 3.89 and c0 = 11.67 Å (for the

nominal composition, i.e., � = 0, of YBa2Cu3O7��). As shown

in Appendix A1, it is not a problem to verify the simplified

O-lattice in this system.
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Another example of this type of structure is lithium iron

phosphate (or triphylite), LFP, LiFePO4. This is an envir-

onmentally friendly material (Padhi et al., 1997) used as the

cathode in lithium ion batteries (LIBs). This structure has an

orthorhombic unit cell with space group Pnma and lattice

parameters a0 = 10.329, b0 = 6.007 and c0 = 4.691 Å. The lattice

parameters are far from pseudo-tetragonal. Kuriplach et al.

(2019) composed a near-CSL �3 grain boundary with the

(101) plane for this structure. The CSL is determined by

translation vectors a � c, b and 3c:

CSL ¼

1 0 0

0 1 0
�11 0 3

0
@

1
A: ð49Þ

It was created by a rotation of 48.3� around the [010] axis. The

parameter a = cos 48.3� = 2/3.

The corresponding rotation matrix R is

R ¼
1

3

2 0 �
ffiffiffi
5
p

0 3 0ffiffiffi
5
p

0 2

0
@

1
A: ð50Þ

The lattice parameters are slightly relaxed by about 4% to

obtain an NCSL. This relaxation is

a0:b0:c0ð Þ
2
¼ 1:0329:0:6007:0:4691ð Þ

2

¼ 1:

ffiffiffi
5
p

4
:

ffiffiffi
5
p

5

� �2

¼ 80:25:16: ð51Þ

The transformation matrix S and its inverse for the ortho-

rhombic LFP structure is

S ¼ a0

1 0 0

0
ffiffi
5
p

4 0

0 0 1ffiffi
5
p

0
@

1
A; S�1

¼
1

a0

1 0 0

0 4ffiffi
5
p 0

0 0
ffiffiffi
5
p

0
@

1
A: ð52Þ

The conversion matrix W reads

W ¼
S�1R�1S � 2a� 1ð ÞI

2 1� að Þ

¼

"
1

3

1 0 0

0 4ffiffi
5
p 0

0 0
ffiffiffi
5
p

0
B@

1
CA 2 0

ffiffiffi
5
p

0 3 0

�
ffiffiffi
5
p

0 2

0
B@

1
CA

1 0 0

0
ffiffi
5
p

4 0

0 0 1ffiffi
5
p

0
B@

1
CA

�
4

3
� 1

� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA
#�

2 1�
2

3

� �

¼

1
2 0 1

2

0 1 0

� 5
2 0 1

2

0
B@

1
CA; ð53Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 6 1�

2

3

� �
¼ 2 ð54Þ

and

xðOÞ ¼ Wt ¼

1
2 0 1

2

0 1 0

� 5
2 0 1

2

0
@

1
A 1 0 0

0 1 0

0 0 1

0
@

1
A ¼

1
2 0 1

2

0 1 0

� 5
2 0 1

2

0
@

1
A:
ð55Þ

Finally, the CSL vectors are obtained by the operation on the

condition that the unit cell of the modified O-lattice is multi-

plied by n = 2:

x1 ¼
2
3 � x

O
1 þ 0 � xO

2 þ
4
3 � x

O
3

x2 ¼ 0 � xO
1 þ 1 � xO

2 þ 0 � xO
3

x3 ¼ �1 � xO
1 þ 0 � xO

2 þ 1 � xO
3

8<
: ; ð56Þ

CSL ¼ xðOÞ

2
3 0 �11

0 1 0
4
3 0 1

0
B@

1
CA ¼

1
2 0 1

2

0 1 0

� 5
2 0 1

2

0
B@

1
CA

2
3 0 �11

0 1 0
4
3 0 1

0
B@

1
CA

¼

1 0 0

0 1 0

�11 0 3

0
B@

1
CA: ð57Þ

This CSL is identical to that reported by Kuriplach et al. (2019)

It is obvious that the determinant of the multiplicity matrix is

equal to 2:

2
3 0 �11
0 1 0
4
3 0 1

������
������ ¼

2

3
þ

4

3
¼ 2: ð58Þ

5.5. Case V: a R25 CSL of [010]/49.91��� in the monoclinic
sodium hydrogencarbonate (NaHCO3) structure (LPR a0/b0/
c0 = 4/3/8)

A CSL or an NCSL in a monoclinic lattice is not common

either. Monoclinic ZrO2 is often chosen as another model

structure for a low-symmetry lattice NCSL calculation.

However, this structure can be considered as pseudo-cubic,

see Appendix A2.

To further validate the simplified O-lattice by using a strong

case for a monoclinic structure, sodium hydrogen carbonate

(NaHCO3) is chosen because it has a very large LPR. Its space

group is P21/n and its lattice parameters are a0 = 7.469, b0 =

9.684, c0 = 3.479 Å, �= 93.32�. A (101) twin has been observed

in crystals of NaHCO3 (Aquilano et al., 2015). The twin axis is

[010]m (where m indicates monoclinic cell) and the rotation

angle is 49.91� for a �8 (101) twin. The (101) twin as an NCSL

is investigated here. The analytical expression of the NCSL

translation vectors was not described in the original work. The

present author deduced it by using a stereographic projection

tool (Liu & Liu, 2012). The matrix form of the CSL for the

(101) twin is

CSL ¼

1 0 1

0 1 0

1 0 7

0
@

1
A and

1 0 1

0 1 0

1 0 7

������
������ ¼ 8: ð59Þ

The parameter a = cos 49.91� = 0.6440 ’ 5/8.
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The transformation matrix S and its inverse for monoclinic

NaHCO3 are

S ¼ a0

1 0 � 5
192

0 9
7 0

0 0 4
9

0
@

1
A; S�1

¼
1

a0

1 0 15
256

0 7
9 0

0 0 9
4

0
@

1
A: ð60Þ

The rotation axis uO (where O indicates orthorhombic basis) is

converted from um used in the monoclinic basis:

uO ¼ S�1um ¼
1

a0

1 0 15
256

0 7
9 0

0 0 9
4

0
@

1
A 0

1

0

2
4

3
5 ¼ 1

b0

0

1

0

2
4

3
5: ð61Þ

The rotation matrix R is then a 2D rotation around the Z axis

of the orthorhombic basis:

R ¼

5
8 0 � 4

5

0 1 0
4
5 0 5

8

0
@

1
A: ð62Þ

The conversion matrix W reads

W ¼
S�1R�1S � 2a� 1ð ÞI

2 1� að Þ

¼

" 1 0 � 5
192

0 9
7 0

0 0 4
9

0
B@

1
CA

5
8 0 � 4

5

0 1 0
4
5 0 5

8

0
B@

1
CA

1 0 15
256

0 7
9 0

0 0 9
4

0
B@

1
CA

�
10

8
� 1

� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA
#�

2 1�
5

8

� �

¼

5
12 0 11

24

0 1 0

� 29
12 0 13

24

0
B@

1
CA; ð63Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 16 1�

5

8

� �
¼ 6 ð64Þ

and

xðOÞ ¼ Wt ¼

5
12 0 11

24

0 1 0

� 29
12 0 13

24

0
B@

1
CA

1 0 � 5
192

0 1 0

0 0 1

0
B@

1
CA

¼

5
12 0 11

24

0 1 0

� 29
12 0 13

24

0
B@

1
CA: ð65Þ

The value �15/192 in the translation vector t is due to a slight

tilting of [001]m away from the Z axis of the orthogonal basis

by about � � �/2 = 3.32�. Obviously, its effect on the final

modified O-lattice can be ignored because of its very small

modulus. Finally, the CSL vectors are obtained by the

operation on the condition that the unit cell of the modified

O-lattice is multiplied by n = 6:

x1 ¼
3
4 � x

O
1 þ 0 � xO

2 þ
3
2 � x

O
3

x2 ¼ 0 � xO
1 þ 1 � xO

2 þ 0 � xO
3

x3 ¼ �2 � xO
1 þ 0 � xO

2 þ 4 � xO
3

8<
: ; ð66Þ

CSL ¼ xðOÞ

3
4 0 �22

0 1 0
3
2 0 4

0
B@

1
CA ¼

5
12 0 11

24

0 1 0

� 29
12 0 13

24

0
B@

1
CA

3
4 0 �22

0 1 0
3
2 0 4

0
B@

1
CA

¼

1 0 1

0 1 0

�11 0 7

0
B@

1
CA: ð67Þ

It is obvious that the determinant of the multiplicity matrix is

equal to 6:

3
4 0 �22
0 1 0
3
2 0 4

������
������ ¼ 3þ 3 ¼ 6: ð68Þ

6. Discussion

The case studies above showed the successful application of

the simplification to the modified O-lattice of crystal lattices

with high symmetry (cubic and hexagonal structures) in terms

of exact CSLs. However, when it is used in low-symmetry

cases, for instance for orthorhombic and monoclinic struc-

tures, it immediately faces the same problem of finding

superimposed points as when extending the classical CSL

methods to low-symmetry structures. For these cases, it is

geometrically meaningless to discuss CSLs where the LPR of

the low-symmetry structure does not involve integers.

After adopting the NCSL and constraint CSL concepts, the

simplification to the modified O-lattice is applicable to

orthorhombic structures, as shown for the �3 CSL of [010]/

48.3� in the orthorhombic LiFePO4 structure, even though this

is not a CSL anymore. Note that the CSL here is a constraint

CSL or an NCSL. It should be possible to extend this to a

tetragonal structure, as a special case of an orthorhombic

structure.

Surprisingly, when attempting to apply it to a monoclinic

structure, such as ZrO2 or NaHCO3, is is still possible to find

an NCSL. Careful relaxation of the lattice parameters of a

low-symmetry lattice is necessary to optimize the LPRs and

get a rational NCSL.

It is probably safe to claim that the simplified relationship

between the modified O-lattice and the rotation matrix is valid

for CSLs and NCSLs of Bravais lattices for which an ortho-

rhombic sublattice can be found, which is usually possible for

an arbitrary Bravais lattice.

7. Conclusions

By investigating the modified O-lattice for CSLs proposed by

Karakostas, it was found that there is a strong and direct

connection between the modified O-lattice and the rotation

matrix for deducing a CSL. A simplified analytical method for

generating the modified O-lattice for CSLs and NCSLs was

then developed for any Bravais lattice using only the rotation

matrix. The simplified O-lattice formula was used successfully

to obtain a CSL from a rotation operation for a few examples
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of Bravais lattices covering high-symmetry cubic, medium-

symmetry hexagonal and low-symmetry orthorhombic and

monoclinic lattices. It should be convenient to apply in

computer-aided crystallographic calculations or simulations of

phase boundaries.

APPENDIX A
Two further examples for low-symmetry lattices

A1. Case VI: a R59 CSL of [001]/89.03��� in the simple
orthorhombic YBCO structure [LPR (a0/b0)

2 = 29/30]

YBa2Cu3O7�� is often chosen as a model structure for low-

symmetry lattice CSL calculations. This structure has an

orthorhombic unit cell with lattice parameters a0 = 3.82, b0 =

3.89 and c0 = 11.67 Å for the nominal composition, i.e., for � =

0. A (110) twin boundary was observed in this structure with a

value of � = 64 when a2:b2 = 63:65 (Zhu & Suenaga, 1992) or

59 when a2:b2 = 29:30 (Gertsman, 1992). Here a rotation of

89.03� around the [001] axis is chosen to generate a �59

NCSL. The parameter a = cos 89.03� = 1/59.

The corresponding rotation matrix R is

R ¼
1

59

1 �2
ffiffiffiffiffiffiffi
870
p

0

2
ffiffiffiffiffiffiffi
870
p

1 0

0 0 59

0
@

1
A: ð69Þ

The transformation matrix S and its inverse for a hexagonal

structure is

S ¼ a0

1 0 0

0
ffiffiffi
30
29

p
0

0 0 3

0
@

1
A; S�1

¼
1

a0

1 0 0

0
ffiffiffi
29
30

p
0

0 0 1
3

0
@

1
A: ð70Þ

The conversion matrix W reads

W ¼
S�1R�1S � 2a� 1ð ÞI

2 1� að Þ

¼

"
1

59

1 0 0

0
ffiffiffi
29
30

p
0

0 0 1
3

0
B@

1
CA 1 �2

ffiffiffiffiffiffiffi
870
p

0

2
ffiffiffiffiffiffiffi
870
p

1 0

0 0 59

0
B@

1
CA

�

1 0 0

0
ffiffiffi
30
29

p
0

0 0 3

0
B@

1
CA� 2

59
� 1

� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA
#�

2 1�
1

59

� �

¼

1=2 �15=58 0

1=4 1=2 0

0 0 1

0
B@

1
CA; ð71Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 116 1�

1

59

� �
¼ 116 ð72Þ

and

xðOÞ ¼ Wt ¼

1=2 �15=58 0

1=4 1=2 0

0 0 1

0
B@

1
CA

1 0 0

0 1 0

0 0 1

0
B@

1
CA

¼

1=2 �15=58 0

1=4 1=2 0

0 0 1

0
B@

1
CA: ð73Þ

Finally, the CSL vectors are obtained by the operation on the

condition that the unit cell of the modified O-lattice is multi-

plied by n = 116:

x1 ¼ 4 � xO
1 þ 0 � xO

2 þ 0 � xO
3

x2 ¼ 0 � xO
1 þ 58 � xO

2 þ 0 � xO
3

x3 ¼ 0 � xO
1 þ 0 � xO

2 þ 1 � xO
3

8<
: ; ð74Þ

CSL ¼ xðOÞ
4 0 0

0 58 0

0 0 1

0
B@

1
CA

¼

1=2 �15=58 0

1=4 1=2 0

0 0 1

0
B@

1
CA

4 0 0

0 58 0

0 0 1

0
B@

1
CA

¼

2 �15 0

1 29 0

0 0 1

0
B@

1
CA: ð75Þ

It is obvious that the determinant of the multiplicity matrix is

equal to 116:

4 0 0

0 58 0

0 0 1

������
������ ¼ 4� 58� 1 ¼ 116: ð76Þ

A2. Case VII: a R25 CSL of [106]/73.7��� in the monoclinic
ZrO2 structure (LPR a0/b0/c0 = 1/1/1)

As mentioned in Section 5.5, monoclinic ZrO2 is often

chosen as another model structure for low-symmetry lattice

NCSL calculations because of its pseudo-cubic nature. This

structure has lattice parameters a0 = 5.149, b0 = 5.213, c0 =

5.316 Å and � = 99.228�. To find an NCSL in this crystal, a

lattice relaxation is applied to monoclinic ZrO2 so that a = b =

c and cos � =�1/6, where � = 99.5941�. For this relaxed lattice,

Gertsman et al. (1996) generated a long list of NCSLs. Here a

rotation of 73.7� around the [106]m axis (where m indicates

monoclinic basis) is chosen to generate a �25 NCSL. The

parameter a = cos 73.7� = 7/25.

The transformation matrix S and its inverse for monoclinic

ZrO2 are

S ¼ a0

1 0 �1=6

0 1 0

0 0
ffiffiffiffiffi
35
p

=6

0
@

1
A; S�1

¼
1

a0

1 0 1ffiffiffi
35
p

0 1 0

0 0 6ffiffiffi
35
p

0
@

1
A: ð77Þ

The rotation axis uo in the orthorhombic basis is converted

from the axis um in the monoclinic basis:
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uo ¼ Sum ¼

1 0 �1=6

0 1 0

0 0
ffiffiffiffiffi
35
p

=6

0
@

1
A 1

0

6

2
4

3
5 ¼ 0

0

1

2
4

3
5: ð78Þ

The rotation matrix R is then a 2D rotation around the Z axis

of the orthorhombic basis:

R ¼
1

25

7 �24 0

24 7 0

0 0 25

0
@

1
A: ð79Þ

The conversion matrix W reads

W ¼
S�1R�1S � 2a� 1ð ÞI

2 1� að Þ

¼

"
1

25

1 0 1ffiffiffi
35
p

0 1 0

0 0 6ffiffiffi
35
p

0
B@

1
CA

7 �24 0

24 7 0

0 0 25

0
B@

1
CA

�

1 0 �1=6

0 1 0

0 0
ffiffiffiffiffi
35
p

=6

0
B@

1
CA� 14

25
� 1

� � 1 0 0

0 1 0

0 0 1

0
B@

1
CA	�2 1�

7

25

� �

¼

1=2 3=4 1=12

2=3 �1=2 �1=9

0 0 1

0
B@

1
CA; ð80Þ

n ¼
�

�0
¼ 2� 1� cos �ð Þ ¼ 50 1�

1

25

� �
¼ 48 ð81Þ

and

xðOÞ ¼ Wt ¼

1=2 3=4 1=12

2=3 1=2 �1=9

0 0 1

0
B@

1
CA

1 0 0

0 1 0

0 0 1

0
B@

1
CA

¼

1=2 3=4 1=12

2=3 1=2 �1=9

0 0 1

0
B@

1
CA: ð82Þ

Finally, the CSL vectors are obtained by the operation on the

condition that the unit cell of the modified O-lattice is multi-

plied by n = 48:

x1 ¼ �1 � xO
1 þ 10=3 � xO

2 þ 0 � xO
3

x2 ¼ �3 � xO
1 þ 2 � xO

2 þ 0 � xO
3

x3 ¼ 1 � xO
1 þ 0 � xO

2 þ 6 � xO
3

;

8<
: ð83Þ

CSL ¼ xðOÞ
�1 �3 1

10=3 2 0

0 0 6

0
B@

1
CA

¼

1=2 3=4 1=12

2=3 1=2 �1=9

0 0 1

0
B@

1
CA
�1 �3 1

10=3 2 0

0 0 6

0
B@

1
CA

¼

2 0 1

1 �1 0

0 0 6

0
B@

1
CA: ð84Þ

It is obvious that the determinant of the multiplicity matrix is

equal to 48:

�1 �3 1

10=3 2 0

0 0 6

������
������ ¼ �2þ 10ð Þ � 6 ¼ 48: ð85Þ
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