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Filamentary and rod-like assemblies are ubiquitous in biological systems, and

single such assemblies can form one-dimensional (1D) crystals. New, intense

X-ray sources, such as X-ray free-electron lasers, make it feasible to measure

diffraction data from single 1D crystals. Such experiments would present some

advantages, since cylindrical averaging of the diffraction data in conventional

fiber diffraction analysis is avoided, there is coherent signal amplification

relative to single-particle imaging, and the diffraction data are oversampled

compared with those from a 3D crystal so that the phase problem is better

determined than for a 3D crystal [Millane (2017). Acta Cryst. A73, 140–150].

Phasing of 1D crystal diffraction data is examined, by simulation, using an

iterative projection algorithm. Ab initio phasing is feasible with realistic noise

levels and little envelope information is required if a shrink-wrap algorithm

is also incorporated. Some practical aspects of the proposed experiments

are explored.

1. Introduction

Molecules forming filaments, fibers or, in general, high-aspect-

ratio rod-like assemblies, have been studied as a class of their

own, alongside globular and membrane proteins, since the

beginning of the field of structural biology. Indeed, X-ray

diffraction patterns from DNA fibers, dating back to 1952,

offered a first look at the genetic information storage of DNA,

and are a prime example of these commonly occurring targets

and their significance (Gosling, 1954). Filamentary structures

are the natural way that biomolecules can assemble with

equivalent contacts along an axis, to build many of the struc-

tures of cells (e.g. microfilaments, microtubules, myofilaments)

(Erlandson, 1989; Stubbs, 1999). Furthermore, equivalent

contacts between a variety of subunit structures can be

achieved by the filaments adopting helical symmetry (Diaz et

al., 2010). Studies of the structures of filamentary assemblies

are therefore of key importance in structural biology.

The first main approach to structure determination for

filamentary assemblies is so-called X-ray fiber diffraction

analysis (Stubbs, 1999; Millane, 2010). In this approach, an

oriented fiber specimen of the molecule of interest is

prepared, its X-ray diffraction pattern is measured, and the

diffraction data used as the basis for structure determination.

The hallmark of a fiber specimen is that it contains a large

number of molecules that are oriented with their long axes

approximately parallel. Alignment must be within a few

degrees for high-resolution studies. The oriented molecules

may assemble, side by side, in a random manner, in a so-called

noncrystalline fiber, or they may assemble into small crystal-

lites which, in turn, assemble side by side in a random manner,

in a so-called polycrystalline fiber. The second hallmark of a
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fiber specimen is that either the individual molecules (in a

noncrystalline fiber) or the crystallites (in a polycrystalline

fiber) are randomly rotated about the orientation axis. This

rotational disorder in the specimen results in the measured

diffraction being cylindrically averaged about the corre-

sponding axis in reciprocal space. The cylindrical averaging

substantially reduces the information content of the diffrac-

tion data relative to that from a single crystal or from a single

particle. The reduced information content makes structure

determination difficult since one has to, in effect, unravel the

cylindrical averaging in addition to solving the usual phase

problem (Stubbs, 1975; Namba & Stubbs, 1985; Millane, 2010).

Despite the challenges of X-ray fiber diffraction analysis, it

has played an important role in determining the structures of

many such assemblies (Stubbs, 1999; Millane, 2010). It is,

however, technically demanding, depending on model

building for molecules with small repeating units, or collection

of additional diffraction data for larger assemblies, or is

limited to low resolution. As a result, the application of fiber

diffraction analysis has been quite limited relative to single-

crystal crystallography, and there are many fibrous systems in

biology that await structural analysis.

The second important technique for studying the structures

of filamentary assemblies is cryo-electron microscopy (cryo-

EM) (De Rosier & Klug, 1968; Egelman, 2000; Yonekura et al.,

2003; Unwin, 2005). With the advent of direct electron

detectors and advances in image processing methods, cryo-EM

has become the method of choice for high-resolution struc-

tural studies of fibrous assemblies (Fromm et al., 2015;

Gutsche et al., 2015; DiMaio et al., 2015; Fromm & Sachse,

2016; Fitzpatrick et al., 2017; Bradshaw & Paul, 2019). Despite

these improvements in cryo-EM, X-ray imaging of these

targets has key advantages when room-temperature dynamics

or time-resolved aspects of the structure are important, or in

cases where cryo-EM fails.

Zuo et al. (2003) reported imaging of a double-wall carbon

nanotube using electron diffraction data and performing

phase retrieval. They used a single 2D diffraction pattern and

reconstructed a projection image, and the specimen was not

strictly periodic so the procedure was more analogous to

single-particle imaging.

The fundamental difficulty of X-ray fiber diffraction

analysis is one of signal level. Many molecules in the specimen

are required to produce measurable diffraction, but the

rotational disorder results in cylindrical averaging of the

diffraction. These difficulties would be overcome if diffraction

could be measured from a single molecule, since there is then

no cylindrical averaging. High-intensity X-ray free-electron

laser (XFEL) sources with sub-micron focal spots offer the

opportunity to measure diffraction from single fibrillar

assemblies, while also avoiding radiation damage, thus

circumventing the primary difficulties of cylindrical averaging

and disorientation in fiber diffraction analysis, for determining

the structures of these molecules. Fibrous assemblies are

frequently periodic along their long axis, i.e. are one-

dimensional (1D) crystals, which is the case considered here.

If data from such specimens are measured, then the phase

problem for 1D crystals takes on practical importance. In

particular, diffraction data from a 1D crystal are rich

compared with those from a 3D crystal, and there are signif-

icant opportunities for ab initio phasing (Millane, 2017). 1D

crystals present an advantage over single-particle (noncrys-

talline) diffraction due to Bragg amplification boosting the

signal level.

Diffraction experiments with filaments, fibrils and fibers

using XFELs have recently been reported. Popp et al. (2017)

measured diffraction patterns at 10–20 Å resolution from four

filament specimens flow-aligned in a liquid micro-jet, with at

least 100 individual filaments in the beam. However, the

random rotation of the filaments in the beam focus meant that

the data were still cylindrically averaged as in conventional

diffraction patterns from fibers. Branden et al. (2019) used

data of this kind from flow-aligned collections of about 20

microtubules to obtain 2D projections of the electron density

at 20 Å resolution, i.e. the 2D projection is recoverable from

the cylindrically averaged diffraction data. Seuring et al.

(2018) recorded diffraction to 2.4 Å resolution from amyloid

protofibrils, and from tobacco mosaic virus (TMV) filaments

to 2.7 Å, mounted and aligned on graphene, with, in some

cases, only a few amyloid protofibrils or TMV filaments in the

XFEL focus. This method of sample support on ultra-clean

graphene offers a dramatic reduction in background diffrac-

tion compared with liquid-jet delivery. On average, about

eight TMV filaments and 50 amyloid protofibrils were sampled

in the 150 nm focal diameter of the XFEL beam. Some

patterns with only a few fibrils in the beam were also recorded.

Finally, Wojtas et al. (2017) recorded weak diffraction patterns

from individual crystalline amyloid fibrils delivered and

oriented in a liquid jet, that were analyzed, re-oriented and

merged into a 3D data set. This experiment demonstrates

the feasibility of measuring diffraction from single, tiny

crystalline fibrils, and increasing the signal-to-noise ratio

(SNR) by orientating and averaging the weak patterns. In this

case, however, the fibrils are essentially single 3D crystals,

giving Bragg diffraction, and the resulting phase problem is

identical to that in conventional single-crystal crystallography,

and so does not accrue the advantages of the increased

information content of diffraction by single 1D crystals that is

considered here.

In light of these results, it is likely that future developments

in source brightness and pulse rates, sample preparation and

delivery methods, detectors and data processing algorithms,

will allow diffraction data from single filaments to be

collected, oriented, merged and used for structure determi-

nation. In the absence of cylindrical averaging, and with the

increased diffraction sampling from single 1D crystals, ab initio

phasing is possible. Methods for ab initio electron-density

reconstruction from such data are explored in this paper.

Latychevskaia & Fink (2018) have investigated direct

imaging of helical molecules from both 3D, and cylindrically

averaged 2D, diffraction patterns. For 3D data, analogous to

the case considered here, they demonstrated reconstruction of

point double helices from simulated data, although general

electron-density reconstruction was not considered. They also
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demonstrated low-resolution reconstruction from cylindrically

averaged data, although that is beyond the scope of the

current paper.

Key results concerning the phase problem for 1D crystals

(Millane, 2017) are reviewed in Section 2, and in Section 3 the

iterative projection algorithms that we use for phase retrieval

are briefly reviewed. In Section 4, our phase retrieval algo-

rithm for ab initio reconstruction from 1D crystal diffraction

data is described. Simulation results are presented in Section

5. Some practical considerations in implementing these ideas

in XFEL imaging are discussed in Section 6, and concluding

remarks are made in Section 7.

2. 1D crystal phase problem

Uniqueness properties of phase problems in various forms

have been studied extensively (Elser & Millane, 2008; Millane,

2017; Arnal & Millane, 2017). Uniqueness of the solution to a

phase problem is conveniently described with the help of the

constraint ratio, denoted �, which is equal to the ratio of the

number of independent intensity data available to the number

of independent parameters describing the object. If, for a

particular problem, �> 1, then the problem is highly

constrained and a unique solution (or a small number of

solutions) is expected. In practice, as a result of noise and

missing data, and other uncertainties, an additional margin will

be needed. If � � 1, the solution to the phase problem is not

unique and a multitude of objects are consistent with the

intensity data and real-space constraints.

It is easily shown that for a single object � � 4 (Elser &

Millane, 2008), and therefore a unique solution to the phase

problem is expected in general. The phase problem then, at

least, is not a significant impediment for single-particle

imaging. For a 3D crystal however, as a result of the reduced

data set that is restricted to the intensities of the Bragg

reflections, � ¼ 1=2, or � ¼ 1=2p if the protein content p of

the crystal is known (Millane & Arnal, 2015). Therefore,

except in the case of high-solvent-content crystals, and in the

absence of additional real-space constraints, �< 1, and the

crystallographic phase problem is highly non-unique. Addi-

tional data or information are therefore needed to provide

some phase information. Additional constraints, such as non-

crystallographic symmetry, may render the solution unique.

For a 2D crystal, � ¼ 1 in general, but � ¼ 1=p if some

envelope information is available (Arnal & Millane, 2017).

The 2D crystal phase problem is therefore non-unique in

general, although there is some potential for ab initio phasing

in favorable cases.

Let us return now to the case at hand of a 1D crystal.

Uniqueness properties of the phase problem for a 1D crystal

are described in detail by Millane (2017) and are summarized

here. Diffraction from a 1D crystal consists of planes, so-called

layer planes, in reciprocal space. (Note that in the case of fiber

diffraction, the cylindrical averaging reduces the layer planes

to so-called layer lines.) The planes are spaced by the Bragg

spacing, and the diffraction intensity can be measured, in

principle, continuously on each layer plane. As a result of the

increased sampling relative to the full 3D Bragg sampling from

a 3D crystal, � ¼ 2 in general for a 1D crystal. However,

although this favorable constraint ratio indicates that the

problem is highly constrained, as a result of the highly struc-

tured sampling by the layer planes, many solutions are still

permitted (Millane, 2017). The solution set is low dimensional

relative to the dimensionality of all electron densities, but still

forms a large set of possible solutions. However, the low

dimensionality means that minimal additional a priori infor-

mation is needed to render the solution unique. In particular,

if the molecular envelope is known and deviates from a

cylinder (of any cross section) then the solution is highly

constrained (Millane, 2017). Millane (2017) shows that the

quantity � ¼ jCj=jSj, where jCj denotes the volume of the

smallest cylinder that circumscribes the molecule and jSj

denotes the volume of the molecular envelope, describes the

constraining power of the envelope, in the sense that �> 1

ensures a unique solution. Larger deviations of the envelope

from a cylinder, and then larger values of �, correspond to a

more constrained solution.

In summary then, the phase problem for a 1D crystal admits

multiple solutions, but a unique solution is expected in the

presence of minimal envelope information. Interestingly,

known helix symmetry, often present in 1D crystals, does not

provide additional constraints on the 1D crystal phase

problem (Millane, 2017).

3. Iterative projection algorithms

Iterative projection algorithms (IPAs) have been used

successfully to solve phase problems by reformulating them as

a constraint satisfaction problem. We briefly describe here the

IPA that we use for reconstruction from 1D crystal diffraction

data, and for the simulations described in the next section. See

Millane & Lo (2013) for more information on IPAs.

IPAs take the approach of representing the problem as a

constraint satisfaction problem in which a solution is sought

that satisfies two constraints. In crystallographic phase

retrieval, the two constraints are in reciprocal space and real

space. The reciprocal-space constraint imposes the condition

that the amplitude of the Fourier transform of the electron

density is equal to that measured. The real-space constraint

imposes known properties of the electron density, such as a

known molecular envelope, positivity etc. We denote by f the

vectorized electron density in the unit cell, which belongs to

the vector space RK, and represents all possible densities with

K samples in the unit cell. We denote by CM 2 R
K the set of all

densities that satisfy the reciprocal-space constraints, and by

CS 2 R
K the set of all densities that satisfy the real-space

constraints. The solution to the phase problem is then any

point in the intersection CM \ CS.

IPAs search the vector space RK for a point in the inter-

section, and use projection operators. A projection makes the

smallest change to a point in the vector space (an electron

density) to give a new point (density) that satisfies the

constraint. Mathematically, the projection PC of the vector f

into a constraint set C, denoted PCf, is given by
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PCf ¼ argminf 0 kf
0
� fk; ð1Þ

where argminx f ðxÞ denotes the value of x that minimizes f ðxÞ

and k � k denotes the Euclidean norm. So-called relaxed

projections are also used in IPAs; the relaxed projection,

denoted TCð�CÞf, is given by

TCð�CÞf ¼ ð1� �CÞPCf � �Cf; ð2Þ

where �C is called the relaxation parameter. The use of

relaxed projections in IPAs can improve convergence.

An IPA generates a sequence of iterates f i, starting from a

random electron density f0, that ideally converges to a solution

(a point in the intersection). A particular IPA is defined by an

update rule, which is the operation, made up of projections,

that takes f i to f iþ1. Various IPAs are in use, and here we use

the difference map (DM) algorithm (Elser, 2003) that has

good convergence properties for non-convex constraints (as is

the constraint CM). The update rule for the DM algorithm is

given by

f iþ1 ¼ f i þ �½PSTMð�MÞf i � PMTSð�SÞf i�; ð3Þ

where �1 � � � 1 is a parameter and �M and �S are usually

set to �M ¼ ��S ¼ 1=�. The parameter � is then the only

parameter of the DM algorithm. The value of � used can affect

the speed of convergence, but the choice of value is generally

not particularly critical. A value between 0.5 and 1 is often

used, although sometimes negative values are also used.

Note that the iterate is not itself an estimate of the solution,

and that once the algorithm has converged, or reached a fixed

point, i.e. f iþ1 ¼ f i, the solution f̂f (that satisfies both

constraints) is given by (Elser, 2003; Millane & Lo, 2013)

f̂f ¼ PSTMf i ¼ PMTSf i: ð4Þ

4. Phase retrieval

Reconstruction of the electron density from simulated 1D

crystal data is used to investigate the feasibility of ab initio

phase retrieval with minimal a priori information, using the

DM algorithm. Realistic noise levels for XFEL data from

single 1D crystals are considered. The phase retrieval algo-

rithm and simulation methods are described here.

The Fourier amplitude data are calculated as for a 1D

crystal, i.e. Bragg sampled in the axial dimension, and over-

sampled by a factor 3 in the two lateral dimensions. Various

initial envelopes are considered. The DM algorithm is used

with � ¼ 0:9, and the algorithm is started with a random

electron density inside the starting envelope. A positivity

constraint is applied along with the envelope (support)

constraint. The Fourier amplitude constraint is applied for

all measured, i.e. observed, intensities, unmeasured low-

resolution intensities are allowed to float, and high-resolution

intensities beyond the resolution limit are set to zero.

In many of the simulations, the shrink-wrap algorithm

(Marchesini et al., 2003) is used in conjunction with the DM

algorithm. The shrink-wrap algorithm is used to improve the

envelope as the iterations proceed, and it plays a key role in

evolving the envelope away from a cylindrical starting

envelope.

We consider a 1D crystal with period (cell constant) c. The

value of c is easily determined from the diffraction data. As

described in Section 1, molecules that form 1D crystals

frequently possess helical symmetry. The molecular symmetry

is a discrete symmetry, with u subunits in v turns of the helix in

one c repeat, being referred to as uv-helix symmetry. The

values of u, and usually of v, are straightforwardly determined

from the diffraction data (Millane, 2010). Any particular

element of the structure (atom, residue etc.) then lies on

a filamentary helix of pitch p ¼ c=v. The helix pitch can

then be considered known, up to any possible ambiguity in the

value of v.

Frequently, although not always, as a result of the molecular

helix symmetry, there is a region on the periphery of the

molecule, forming a continuous helix, or screw, which is

completely outside the molecule and in which the electron

density is zero. This is often referred to as a helical groove. B-

DNA, for example, has two such grooves, referred to as the

major and minor grooves, with the major groove being quite

deep. Knowledge of the pitch and the possible existence of a

groove can be used as a support constraint and help to

constrain the envelope away from a cylinder.

For the purposes of a helical envelope constraint, although

the pitch of the helix is known, the hand (left- or right-handed)

may be unknown. If the incorrect hand is chosen for the

envelope, then a good reconstruction will be obtained that is

the enantiomer of the correct structure. For biological mole-

cules, the hand of the residues will be incorrect, and the

correct density is obtained by inverting the reconstruction and

reversing the hand of the helical envelope.

It is important to note that any discrete molecular helix

symmetry does not constrain the phase problem in this case

(as noted above), and any such symmetry is not used or

imposed in the reconstructions. However, the presence of a

continuous helical groove of known pitch in the envelope does

constrain the solution, since the envelope is then not cylind-

rical. Considering a helically symmetric envelope provides a

useful simplification, and is used here to simplify application

of the shrink-wrap algorithm, as is described below.

Although the shrink-wrap algorithm is generally applied in

3D, here we constrain the envelope to have continuous helical

symmetry of known pitch, and are thus able to apply the

shrink-wrap algorithm in 2D. This approach slightly restricts

the available envelopes, but it considerably simplifies the

implementation. The shrink-wrap is achieved by untwisting

and then projecting the electron density, giving the projected

untwisted density denoted Pðr; �Þ as

Pðr; �Þ ¼
Rc
0

�ðr; �� 2�z=p; zÞ dz; ð5Þ

where �ðr; �; zÞ is the electron density in cylindrical polar

coordinates ðr; �; zÞ. The 2D shrink-wrap is applied to Pðr; �Þ,
giving a 2D envelope denoted e2ðr; �Þ, which is then expanded

out to a 3D envelope eðr; �; zÞ as
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eðr; �; zÞ ¼ e2ðr; �þ 2�z=pÞ: ð6Þ

Note that the cylindrical envelope is defined by the pitch p,

and not by the discrete helical symmetry parameters u and v.

Note also that although a 2D continuous helical envelope is

used, the electron density is reconstructed in 3D within the

envelope, and the density itself is not constrained to have

helical symmetry.

Shrink-wrap is applied in the usual way (Marchesini et al.,

2003) by first blurring the projected density with a 2D Gaus-

sian and then thresholding the resulting density to form a new

2D envelope, which is retwisted to form the new 3D envelope

as described above. The width of the Gaussian used is problem

dependent and a full width at half-maximum of 10 Å

(approximately three times the resolution of the data) was

used in the simulations. In the simulations, the initial threshold

is set to zero and is incremented by a fixed value of 0.5�, where

� is the standard deviation of the electron density, at each

shrink-wrap step. If increasing the threshold would cause the

new envelope volume to be smaller than the protein volume

(assumed known from the estimated solvent content of the

crystal), then the increment value is halved. Shrink-wrap is

applied every five IPA iterations. The shrink-wrap algorithm is

implemented slightly differently to that described by March-

esini et al. (2003) in that the threshold is increased rather than

the width of the Gaussian decreased, as the iterations proceed.

This approach was found more effective in moving the

envelope away from a cylinder.

Three error metrics are calculated to assess convergence of

the DM algorithm and the reconstruction quality. The first

error metric, similar to the R factor, En, measures the differ-

ence between the measured amplitude data jFobs
i j, for datum i,

and the corresponding Fourier amplitude of the iterate jFn;ij,

at iteration n, and is given by

En ¼

P
i kFn;ij � jF

obs
i kP

i jF
obs
i j

; ð7Þ

where the sum is over all the measured data i.

The second error metric, denoted Gn, measures the differ-

ence between the true (but unmeasured) low-resolution

amplitudes jF true
j j and the corresponding Fourier amplitude of

the iterate, i.e.

Gn ¼

P
j kFn;jj � jF

true
j kP

j jF
true
j j

; ð8Þ

where the sum is over all the unmeasured low-resolution

amplitudes j. Note that Gn cannot be calculated in practice, but

is useful in simulation to see if the low-resolution amplitudes

are correctly reconstructed.

The third error metric, en, measures the quality of the

reconstruction (electron density), and is given by

en ¼

P
i2Sðfn;i � f true

i Þ
2P

i2Sðf
true
i Þ

2

" #1=2

; ð9Þ

where fn;i is the electron density at iteration n and f true
i is the

true electron density, and the sum is over all the sample points

i in the envelope S.

A successful reconstruction gives small values of all three

metrics. Convergence to a small En but a large en indicates a

non-unique solution.

5. Simulation results

Three sets of simulations were conducted. The first uses a

small synthetic object to illustrate the uniqueness results

described in Section 2. The second and third sets use the

known molecular structures for DNA, with a relatively small

repeating unit, and a recombinase filament, with a larger

repeating unit, respectively.

5.1. Simple object

To illustrate the effect of envelope and positivity constraints

on uniqueness of the solution, as described in Section 2,

reconstructions of a simple 3D object were conducted. The

object has 8� 8� 16 samples, with each assigned a random

value from a uniform distribution on (0, 1). To simulate a non-

cylindrical envelope, a block of 3� 3� 5 ¼ 45 samples on the

edge of the object are set to zero (Fig. 1). The object is zero

padded to 24� 24 samples in the two lateral dimensions, and

1D crystal, noise-free Fourier amplitude data calculated.

Reconstructions were attempted with the DM algorithm

using the Fourier amplitude data for three cases. The first case

used the cylindrical (8� 8� 16) envelope, the second used

the cylindrical envelope with a positivity constraint, and the

third used the non-cylindrical envelope (with the 45 zero-

valued samples excluded). The algorithm was run 100 times

for each case, with 104 iterations for each run, and the results
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Figure 1
(a) True object electron density, and reconstructions for a cylindrical
envelope (b) without (Case 1) and (c) with (Case 2) a positivity
constraint, and (d) with a non-cylindrical envelope constraint (Case 3), as
described in the text.



are summarized in Table 1. The object and typical recon-

structions for the three cases are shown in Fig. 1. Referring to

Table 1, alternative solutions were obtained for the cylindrical

envelope, but either positivity or a non-cylindrical envelope

are sufficient to obtain a unique solution. Convergence was

quite rare for a positivity-only constraint, but only the true

solution was obtained on convergence. For a non-cylindrical

envelope, convergence was reasonably frequent. Note that �
only slightly larger than unity is sufficient for a unique solution

in the case of perfect, noise-free data. The results support the

uniqueness properties described in Section 2.

5.2. B-DNA

Structure determination of nucleic acids was one of the first

beneficiaries of X-ray fiber diffraction analysis. We use the

molecular structure of B-DNA to examine phase retrieval

from 1D crystal diffraction data. The structure used is the

synthetic polynucleotide poly(dA)�poly(dT) (Chandrasekaran

et al., 1995), PDB entry 1ply, which has a c repeat and pitch of

32.4 Å, 101-helix symmetry and an outside cylindrical radius of

10 Å. Note that this is a synthetic DNA with adenine on one

strand and thymine on the other strand. Diffraction data were

calculated between 20 and 2.5 Å resolution, with Gaussian

noise added to the diffraction intensities such that I=�ðIÞ ¼ 2

in the highest-resolution shell between 3 and 2.5 Å, and used

for the reconstructions. The diffraction data on the layer

planes are depicted in Fig. 2. The DM algorithm was run ten

times with 1000 iterations for each run.

The first set of simulations used a fixed envelope. The

envelope was either a circular cylinder or a circular cylinder

with a helical groove of pitch 32.4 Å, of various sizes, removed.
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Table 1
Reconstruction results for a simple object, for the three cases described in
the text.

Case
Cylindrical
envelope Positivity �

Runs
converged

Correct
solutions

Average
No. of
iterations

1 Y N 1 100/100 0/100 147
2 Y Y 1 5/100 5/5 5302
3 N N 1.05 30/100 30/30 456

Figure 2
The diffracted intensity (log scale) for a 1D DNA crystal used as data for
the simulations. The zeroth layer plane is shown at the bottom and the
tenth layer plane at the top.

Figure 3
Reconstructed electron density of one c repeat of B-DNA (a) with a fixed
envelope consisting of a circular cylinder with a helical groove of volume
10% of the cylinder, and (b) with a starting cylindrical envelope with the
2D shrink-wrap algorithm applied. Two base pairs of DNA are also
shown. Figure obtained using Chimera (Pettersen et al., 2004) with
electron density cut at 1�.



The simulation results are summarized in Table 2. For a fixed

cylindrical envelope the algorithm did not converge. Conver-

gence was also not obtained with a small groove of 5% of the

volume of the circumscribing cylinder. For groove volumes

greater than 10% of the cylinder volume (�> 1:1), good

reconstructions were obtained. An example reconstructed

electron density for � ¼ 1:11 is shown in Fig. 3(a). The two

base pairs of the molecular structure shown in the figure

indicate a good-quality reconstructed density. These results

are consistent with the theory presented in Section 2, parti-

cularly given the noise and missing data.

The second set of simulations used a circular cylindrical

starting envelope and application of the 2D shrink-wrap

algorithm, as described in Section 4. In this case, in eight out of

ten runs, a groove evolved and a good reconstruction was

obtained. An example reconstructed electron density is shown

in Fig. 3(b). The fractional volume of the final groove was

about 55%. The final projected untwisted electron density and

the final 2D envelope are shown in Fig. 4.

The encouraging, and possibly surprising, result is that even

with a cylindrical starting envelope, the shrink-wrap algorithm

is able to evolve a non-cylindrical envelope that allows a good

reconstruction.

5.3. RAD51 recombinase filament

The RAD51 recombinase forms a presynaptic filament on

single-stranded DNA (Conway et al., 2004). The inactive

structure of this filament has been determined by X-ray

crystallography (Conway et al., 2004), PDB entry 1szp, and is

used as the basis for simulation of ab initio reconstruction of a

large macromolecular assembly from 1D crystal data. The

assembly has 61-helix symmetry with a c repeat (and pitch) of

130 Å, and an outside radius of 46.5 Å. The assembly has a

large groove, although it is proportionally smaller than the

major groove of B-DNA. Using the known structure, synthetic

diffraction data were calculated between 40 and 3.6 Å reso-

lution and Gaussian noise added to the intensities such that

I=�ðIÞ ¼ 2:5 in the highest-resolution shell between 4.1 and

3.6 Å. The DM algorithm was run ten times as described

above, starting with a random electron density, and the shrink-

wrap algorithm was incorporated into all the reconstructions.

The first set of simulations used a cylindrical starting

envelope of radius 48 Å, with the shrink-wrap algorithm

applied every five iterations. All ten runs converged to the

correct solution. The results are summarized in Table 3. The

error metrics versus iteration for one of the runs are shown in

Fig. 5(a), with final error metrics E ¼ 0:10, G ¼ 0:09 and

e ¼ 0:17. The true and an example reconstructed electron

density in one c repeat are shown in Fig. 6, and a good

reconstruction is evident. The reconstructed electron density

in the �-helical region of residues LEU 296 to PHE 317,

together with the molecular structure, are shown in Fig. 7(a).
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Figure 4
(a) The final projected untwisted reconstructed electron density and (b)
the final 2D envelope, for a B-DNA reconstruction using a starting
cylindrical envelope (shown by the circles) and application of the shrink-
wrap algorithm.

Figure 5
Error metrics E (solid), G (dots) and e (dash) as a function of iteration for
an example reconstruction of the electron density of the RAD51 filament,
starting with (a) a cylindrical envelope, and (b) a cylindrical envelope
with a groove.

Table 2
Reconstruction results for B-DNA.

Relative
groove
volume �

Shrink-
wrap

Runs
converged

Correct
solutions

Average
No. of
iterations

0 1 N 0/10 – –
0.05 1.05 N 0/10 – –
0.10 1.11 N 10/10 10/10 700
0.20 1.25 N 10/10 10/10 300
0 – Y 8/10 8/8 900



The quality of the resulting map is sufficient for model

building.

As for the case of DNA, the shrink-wrap algorithm is

surprisingly effective in evolving a cylindrical starting

envelope into a helical (non-cylindrical) envelope to obtain a

solution. The projected untwisted electron density Pðr; �Þ and

the corresponding 2D envelope e2ðr; �Þ at different stages of

the algorithm for a converged run are shown in Fig. 8. Starting

with a cylindrical envelope, the density is initially approxi-

mately circularly symmetric and, subsequently, a non-

symmetric density develops, resulting in a non-symmetric

projected envelope. With the resulting non-cylindrical

envelope, the problem is well determined and the envelope

and the density converge to the correct solution.

Since the low-resolution diffraction data are important in

defining the envelope, and are not necessarily easily measured,

we investigated the effect of removing more of the low-reso-

lution data. Reconstructions were attempted using the same

protocol as above, but with intensity data between 20 and

3.6 Å resolution. In this case, good reconstructions were not

obtained (Table 3), and the envelope did not evolve away from

a cylinder. This shows the importance of the low-resolution

data for ab initio phasing with minimal envelope information.

In cases where the algorithm is not able to converge from a

starting cylindrical envelope, starting with a small deviation

from a cylindrical envelope may be sufficient to initiate

successful action of the shrink-wrap algorithm. The presence

of helical symmetry offers the opportunity to start with a

slightly non-cylindrical envelope. This is the case even if the

presence and size of any helical groove

are unknown a priori. The idea is that

starting with a small groove of the

correct pitch is likely not to be incon-

sistent with the true molecular

envelope, but may be sufficient to

effectively start the shrink-wrap proce-

dure.

This idea was investigated by starting

with an envelope consisting of a

cylinder with a small helical groove of pitch 130 Å, containing

10% of the volume of the cylinder, removed, as shown in Fig.

9, followed by application of the shrink-wrap algorithm. The

reconstruction algorithm was run using data in the range 20 to

3.6 Å. Good reconstructions were obtained (Table 3), and the

error metrics versus iteration for an example run are shown in

Fig. 5(b), the final error metrics being E ¼ 0:12, G ¼ 0:08 and

e ¼ 0:08. Comparing Fig. 5(b) and Fig. 5(a) shows that the

real-space error e reduces during the search phase in the

former, but not in the latter. This may be due to the electron

density evolving more rapidly towards the true density when it

is constrained by the initial helical groove. An example of the

reconstructed electron density in the region of residues LEU

296 to PHE 317 is shown in Fig. 7(b), and is of sufficient

quality for model building. The resolution of the reconstruc-
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Figure 6
(a) True and (b) reconstructed (with a starting cylindrical envelope and
data in the range 40–3.6 Å) electron density of the RAD51 filament.

Figure 7
Reconstructed electron density in the region of residues LEU 296 to PHE
317 of the RAD51 filament, (a) starting with a cylindrical envelope, and
data in the range 40–3.6 Å resolution, and (b) starting with a cylindrical
envelope with a groove and data in the range 20–3.6 Å resolution. The
molecular model is also shown. Figure obtained using Chimera (Pettersen
et al., 2004) with electron density cut at 1� and zoned around atoms to
2 Å.

Table 3
Reconstruction results for RAD51.

Cylindrical
starting
envelope

Data
resolution
(Å)

Runs
converged

Correct
solutions

Average
No. of
iterations

Average
E

Average
G

Average
e

Y 40–3.6 10/10 10/10 700 0.14 0.10 0.12
Y 20–3.6 0/10 – – – – –
N 20–3.6 10/10 10/10 600 0.13 0.09 0.08



tion is estimated by calculating the phase retrieval transfer

function (PRTF) (Chapman et al., 2006)

PRTFðuÞ ¼
jhFcalcðuÞij

jFobsðuÞj
; ð10Þ

where u is inverse resolution, FcalcðuÞ is the complex Fourier

amplitude of the reconstruction, jFobsðuÞj is the amplitude

data, and the average is over the three best reconstructions in

resolution shells. The PRTF is shown in Fig. 10. The resolution

is estimated as where the PRTF falls to a value of 1=e, which

gives a resolution of the reconstructed density of about 3.8 Å,

slightly less than the data resolution of 3.6 Å.

For RAD51, the helix is right-handed (i.e. 61 as determined

from the crystal structure), but the hand may not be deter-

minable from 1D crystal diffraction data. Therefore, the

algorithm was also run with a left-handed helical envelope.

The algorithm converged to a low Fourier-space error

(E ¼ 0:13), and inspection of the reconstructed density

showed that it is the inversion of the true density. This is

diagnostic of the incorrect hand, as described above.

6. Practical considerations

The results above show the basis and feasibility of ab initio

phasing of diffraction data from 1D crystals. However, to put

this idea into practice will involve overcoming a number of

practical hurdles. Here we briefly consider some of these.

In nanocrystallography and single-particle imaging using

XFELs, the first step after extracting specimen-diffraction-

containing patterns (hit-finding), is orienting, or indexing, the

patterns, i.e. determining the section through reciprocal space

that a particular pattern represents (Shneerson et al., 2008).

This is necessary because the specimen orientation is usually

not known a priori and needs to be determined from the

recorded diffraction. In nanocrystallography with 3D crystals,

this is referred to as indexing, as orienting a pattern in reci-

procal space is equivalent to assigning Miller indices to the

spots on the pattern. The presence of sharp Bragg reflections,

even if they are few in number, substantially eases this

problem, and successful indexing is now fairly routine in most

cases (White et al., 2012). For single-particle imaging (SPI),

where the signal level above the background is low, the

problem is more challenging. In particular, the continuous

nature of the diffraction in SPI means that the problem is not

fundamentally a discrete one, as it is for the crystalline case.

However, approaches such as the expand–maximize–compress

(EMC) method, in which a classification of the patterns is

iteratively updated based on a probabilistic measure of the
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Figure 8
The projected untwisted electron density Pðr; �Þ (left) and the
corresponding 2D envelope e2ðr; �Þ (right) at iterations 10, 100, 480
and 580 (top to bottom) for the RAD51 reconstruction starting with a
cylindrical envelope.

Figure 9
(a) Cylindrical envelope with a groove of 10% of the cylinder volume
removed, used as a starting envelope for the RAD51 reconstruction, as
described in the text. (b) The final reconstructed projected untwisted
electron density for RAD51, and the initial 2D envelope in dark blue.



overall fit of the full data set, are able to orient large collec-

tions of weak patterns (Ayyer et al., 2016).

Similarly to the above cases, the diffraction patterns from a

1D crystal will need to be oriented in reciprocal space prior to

merging to increase the SNR to useable levels. We briefly

consider this orientation problem in the likely experimental

geometry for diffraction from 1D crystals.

The orientation of a diffraction pattern in reciprocal space

corresponds directly to the orientation of the 1D crystal in real

space (the laboratory coordinate frame). Following the

conventional description in fiber diffraction, we define the

orientation of the 1D crystal by the angles ð�; �; !Þ (Millane,

2010; Wojtas et al., 2017), where � is the rotation of the crystal

axis (which we denote the z axis) about the incident X-ray

beam, � is the tilt of the crystal axis out of the plane normal to

the X-ray beam, and ! is the rotation of the crystal about its

axis, as shown in Fig. 11(a). The angles ð�; �; !Þ determine the

2D spherical section of reciprocal space that is sampled by the

2D diffraction pattern recorded from a single 1D crystal. Note

that for a fiber specimen ! is randomized, but for the case

considered here, each 1D crystal will give data for a single

value of !.

Consider first the case of fixed-target delivery of the

specimen in the sample chamber, such as, for example,

graphene supports mounted on a silicon chip, as this method

has the potential for very low background diffraction

compared with liquid-jet delivery (Roedig et al., 2017; Seuring

et al., 2018). We denote by ðR;�;ZÞ cylindrical polar coor-

dinates in reciprocal space, with Z conjugate to z in real space.

The 1D crystals are assumed to lie flat on the support, and to

adopt a variety of rotations ! about their axis (which is in the

plane of the support), with enough values of ! to sufficiently

sample the transform in �. For a particular value of tilt �, the

diffraction patterns over the range of ! values fill a region in

reciprocal space that is a cylinder (within the overall resolu-

tion limits), i.e. all values of �, except for a region around the

Z axis that depends on the tilt. For zero tilt, two cone-like

regions are excluded, and for non-zero tilt two cone-like

regions and an additional lens-shaped region at low resolution

about the Z axis are excluded, as shown in Fig. 12(a).

Consider now a fixed-target support that is tilted at angle �0

to the plane normal to the incident X-ray beam, as shown in

Fig. 11(b). Since the molecules will adopt all values of � on the

support, all values of tilt � will be present on the interval

� 2 ð��0; �0Þ. Referring to Fig. 12(b), the corresponding

diffraction frames will fill reciprocal space out to a resolution

d ¼ ð2 sin �0=�Þ
�1, with a small cone-like region around the Z

axis missing at higher resolutions. For example, at a photon

energy of 8 keV (� = 1.55 Å) and �0 = 10	, reciprocal space is

filled out to 4.5 Å resolution, and only a small region is missing

at higher resolution, as shown in Fig. 12(b). In this case, for

example, the shell between 4.5 and 3 Å resolution is

approximately 90% complete. In summary, diffraction

patterns recorded from 1D crystals that lie with random

rotations on a planar support that is tilted relative to the

incident X-ray beam will provide sufficient information to fill

reciprocal space out to a specific resolution that depends on

the tilt and the wavelength. The maximum resolution as a
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Figure 10
Phase retrieval transfer function (PRTF) as a function of inverse
resolution. The resolution of the reconstruction is estimated where
PRTF ¼ 1=e.

Figure 11
(a) Orientation angles of the 1D crystal in relation to the beam. (b) A 1D
crystal on a fixed-target support with tilt �0.



function of tilt and photon energy, for 100% completeness, is

shown in Fig. 12(c).

In this scenario, each diffraction pattern from a single 1D

crystal needs to be oriented in reciprocal space, i.e. the angles

ð�; �; !Þ determined. This problem is intermediate in difficulty

between the indexing problem for 3D crystals and the orien-

tation problem for SPI. A proposed approach is as follows.

Sections of the layer planes, i.e. layer lines, will be the stron-

gest features, weakly present as curved lines in each pattern.

Detection of these lines should allow the angle � to be esti-

mated, followed by, or in conjunction with, estimation of �.

Note that determination of � is eased somewhat since it is

known to lie in the interval ð��0; �0Þ. Furthermore, since the

tilt axis of the support is known, � and � are highly correlated,

up to a sign ambiguity in �. For example, if the tilt axis is

defined as � ¼ 0, then we have that � ’ 
�0 sin� for an

individual crystal. Since the patterns will be weak, it is likely

that some sort of automated EMC-like algorithm will be

needed to match features and determine � and �. Once these

two angles are determined, it is required to determine the

angle ! for each pattern. This will be the most challenging step

as there are no strong crystalline peaks. However, since there

is only one parameter to be determined, it is less difficult than

for the SPI case, and an EMC-like approach should be

effective. Note that if the molecule has uv helical symmetry,

then ! needs to be determined only on the interval ð0; 2�v=uÞ,

rather than on the interval ð0; 2�Þ. Once the orientation angles

are determined for each pattern, they can be mapped into

reciprocal space and merged into a full 3D data set. Although

angle determination and merging are described separately

above, it is likely that they will be conducted together, i.e.

consistency among merged patterns will be used to iteratively

post-refine the orientation classification, as in the usual EMC

approach.

A possible alternative specimen-delivery system is a

microjet which can also give very low background diffraction

and can orient high-aspect-ratio particles (Branden et al.,

2019). In this case, the pattern orientation approach would be

similar to that described above, although it will be eased

somewhat since both � and � will be known to be within small

ranges as determined by the orientation of the microjet. On

the other hand, completeness of the data set will depend on

the range of orientations that the particles adopt relative to

the jet axis. If this range is narrow, then a few different jet tilts

may be required to obtain a high degree of completeness.

A further consideration is the number of diffraction

patterns likely to be required to generate a data set with

sufficient SNR. The intensity of a Bragg reflection (or the

mean intensity on a Bragg plane) is proportional to the square

of the number of unit cells intersected by the beam, be it a 3D

or a 1D crystal. Therefore, the data quality from a 1D crystal

should be comparable with that from a 3D crystal with the

same number of unit cells. Structure determination by serial

femtosecond crystallography (SFX) has been successful with

as few as about 104 unit cells in the XFEL focus and an SNR of

1–3 in the highest-resolution shell, with as few as 104 indexed

patterns (Boutet et al., 2012; Conrad et al., 2015). The simu-

lations above show that SNRs of the same order should be

sufficient for ab initio phasing from 1D crystal data, so that a

similar number of unit cells may be required. For a 1D crystal

however, the number of unit cells in the beam is likely to be
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Figure 12
(a), (b) Coverage of reciprocal space in ðR;ZÞ, for all values of �. The
circle indicates 3 Å resolution. (a) Coverage is to the left and right of the
dashed (for � = 0	) and solid (for � = 10	) lines for a photon energy of
8 keV (� = 1.55 Å). For � = 10	 the lens-shaped region about the Z axis is
also excluded. (b) Coverage for all tilt angles j�j � 10	. (c) Maximum
resolution for 100% completeness as a function of �0 for photon energies
12 keV (� = 1.03 Å) (dashed line), 8 keV (� = 1.55 Å) (solid line), 6 keV
(� = 2.07 Å) (dotted line).



much smaller than in the 3D crystal case. Larger focal spots

may be needed in order to intersect a sufficient number of unit

cells. For example, with a c repeat of 50 Å and a 1 mm beam

focus, there would be only about 200 unit cells in the beam. If

the assembly length is smaller than the beam diameter then,

obviously, the signal level is determined by this length rather

than by the beam diameter. In any case, this implies that of the

order of 107 indexed diffraction patterns would be required.

While this is a large number, there is reason to be cautiously

optimistic. Improvements in low-background sample supports

or other delivery systems will increase the achievable SNR of

individual patterns and thence reduce the number of patterns

required. Increases in XFEL pulse intensity and pulse rates,

and improvements in sample scanning technology, will facil-

itate measuring and processing larger numbers of patterns. In

summary, while collecting sufficient data from 1D crystals will

be challenging, it is likely that various technological

improvements over coming years will bring suitable data

collection within reach.

A final consideration is the assumption that the assembly

forms a perfect 1D crystal. In particular, as a result of the large

aspect ratio and some degree of flexibility, the molecular axis

may exhibit deviations from a straight line. Such distortions

will affect the diffracted intensity at high resolution. The

maximum resolution to which the data represent an exact 1D

sampling of the transform of one repeat unit will be

approximately equal to the mean deviation of the assembly

axis from the mean axis of the crystal. The effect is analogous

to that of mosaicity in 3D crystals which, however, does not

fundamentally affect the resolution of the diffraction data if

present to a small degree. The same will be the case for a 1D

crystal, and small deviations from a straight axis can be

tolerated or corrected for. However, the crystal would need to

be reasonably well approximated by a rigid rod over the

length of the crystal in the focal region. The resolution

achievable in a particular case will be limited by the assembly

flexibility, and the approach will be more suitable for stiff

assemblies such as microtubules than for more flexible poly-

mers, without the use of preparations that promote additional

alignment of the axis.

7. Conclusions

Structure determination from 1D crystal diffraction offers

some advantages for studies of fibrillar systems, in terms of

circumventing the effects of cylindrical averaging and disor-

ientation in traditional fiber diffraction analysis, and oppor-

tunities for ab initio phasing. Measuring diffraction from a

single 1D crystal has been out of reach with conventional

X-ray sources, but becomes feasible with XFEL sources. The

phase problem for 1D crystals is better determined than for

3D crystals, and approaches that for SPI while offering greater

signal levels. Previous theoretical results indicate that direct

reconstruction should be possible if a slightly non-cylindrical

envelope constraint can be applied.

The simulation results presented here indicate that, with

realistic noise levels and missing data, starting with an

unstructured cylindrical envelope and incorporation of a 2D

helical shrink-wrap algorithm can allow direct reconstruction

in favorable cases. Alternatively, using the same approach but

starting with a small helical groove may also allow direct

reconstruction. Implementation of a less constrained 3D

shrink-wrap algorithm may further increase the radius of

convergence. Although the results presented are promising,

there are some significant practical hurdles that would need to

be overcome for practical implementation of the approach.

These include sample delivery, orienting the weak diffraction

patterns, and measuring enough patterns to give a data set

with sufficient SNR. However, current progress in measuring

XFEL data from such systems, and likely upcoming

improvements in sample delivery and XFEL technology, bode

well for the potential of such an approach.
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