
172 https://doi.org/10.1107/S2053273322000845 Acta Cryst. (2022). A78, 172–199

research papers
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Statistically sound crystallographic symmetry classifications are obtained with

information-theory-based methods in the presence of approximately Gaussian

distributed noise. A set of three synthetic patterns with strong Fedorov-type

pseudosymmetries and varying amounts of noise serve as examples. Contrary to

traditional crystallographic symmetry classifications with an image processing

program such as CRISP, the classification process does not need to be

supervised by a human being and is free of any subjectively set thresholds in the

geometric model selection process. This enables crystallographic symmetry

classification of digital images that are more or less periodic in two dimensions

(2D), also known as crystal patterns, as recorded with sufficient structural

resolution from a wide range of crystalline samples with different types of

scanning probe and transmission electron microscopes. Correct symmetry

classifications enable the optimal crystallographic processing of such images.

That processing consists of the averaging over all asymmetric units in all unit

cells in the selected image area and significantly enhances both the signal-to-

noise ratio and the structural resolution of a microscopic study of a crystal. For

sufficiently complex crystal patterns, the information-theoretic symmetry

classification methods are more accurate than both visual classifications by

human experts and the recommendations of one of the popular crystallographic

image processing programs of electron crystallography.

1. Introduction: the paper’s background, organization,
motivation, primary goal and secondary objective

1.1. Crystallographic symmetries and pseudosymmetries

The symmetries of the Euclidean plane that are compatible

with translation periodicity in two dimensions (2D) are

tabulated exhaustively in Volume A of International Tables for

Crystallography (Aroyo, 2016) and in the Brief Teaching

Edition of Volume A (Hahn, 2010) of that series of author-

itative reference books from the International Union of

Crystallography (IUCr). Noncrystallographic symmetry has

been defined in the IUCr’s Online Dictionary of Crystal-

lography as a ‘symmetry operation that is not compatible with

the periodicity of a crystal pattern’ (https://dictionary.iucr.org/

Noncrystallographic_symmetry).

It is also noted in this dictionary and by Nespolo et al. (2008)

that this term is often improperly used in biological crystal-

lography, where one should refer either to local and partial

symmetry operations, on the one hand, and pseudo-

symmetries, on the other hand. The above-mentioned online

dictionary defines a crystallographic pseudosymmetry simply

as featuring a ‘deviation’ from a space-group symmetry (of
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one, two, or three dimensions) that ‘is limited’ without

explaining how the deviation is to be quantified (https://

dictionary.iucr.org/Pseudo_symmetry). In this paper, we will

provide such quantifications for three synthetic crystal

patterns.

A crystal pattern is defined as the ‘generalization of a crystal

structure to any pattern, concrete or abstract, in any dimension,

which obeys the conditions of periodicity and discreteness’

(https://dictionary.iucr.org/Crystal_pattern). Physical realiza-

tions of a crystal pattern can be undisturbed or disturbed/

noisy.

Pseudosymmetry is ‘a spatial arrangement that feigns a

symmetry without fulfilling it’ (Moeck, 2018) and can exist in

direct space at either the site/point symmetry level of a plane

symmetry group or the projected Bravais lattice type level, or

a combination thereof. When a very strong translational

pseudosymmetry results in metric tensor components and

lattice parameters that are, within experimental error bars,

indistinguishable from those of a higher-symmetry Bravais

lattice type, one speaks of a metric specialization (Moeck &

DeStefano, 2018). On the site/point symmetry level, one

can make a distinction between crystallographic pseudo-

symmetries that are either compatible with the Bravais lattice

of the unit cell of the genuine symmetries or a sublattice of the

genuine symmetries. These kinds of pseudosymmetries are

often collectively called Fedorov-type pseudosymmetries

(Chuprunov, 2007).

Pseudosymmetries of the Fedorov type form plane

‘pseudosymmetry groups’, which are either disjoint or non-

disjoint from the plane symmetry groups of the genuine

symmetries. The lowest-symmetry pseudosymmetry group is

per definition always disjoint from the lowest-symmetry

genuine symmetry group that provides the best fit to experi-

mental data. The minimal Fedorov-type pseudosymmetry

supergroups of lowest-symmetry maximal pseudosymmetry

subgroups can, however, be non-disjoint from the lowest-

symmetry genuine symmetry group.

When Fedorov-type pseudosymmetries and genuine

symmetries exist in direct space, they exist in reciprocal/

Fourier space as well. In noisy experimental data, local and

partial symmetries may become difficult to distinguish from

pseudosymmetries and genuine symmetries alike.

1.2. Assignments of symmetries in the presence of noise

Note that only the idealized structure of a real-world crystal

is strictly periodic in three dimensions (3D) and features an

unbroken discrete space symmetry group. Analogously, the

idealized structure of a subperiodic crystal (such as a regular

array of intrinsic membrane protein complexes in a lipid

bilayer) is strictly periodic in 2D and features an unbroken

discrete layer symmetry group (Kopský & Litvin, 2010).

The 2D projection of the structure of a real crystal that

contains only a few localized symmetry-breaking structural

defects is, however, deemed to possess a discrete plane

symmetry group on average over multiple unit cells as well.

The genuine plane symmetry group of the projected real

crystal structure is per definition the plane symmetry group

that is least broken. The lowest-symmetry plane symmetry

group of the genuine symmetries is referred to here as the

‘anchoring group’ and is measurably least broken in the crystal

pattern by ‘aggregated noise’ from multiple sources.

By these definitions, Fedorov-type pseudosymmetry groups

are broken to a measurably larger extent than the symmetry

group of the genuine symmetries (and all maximal subgroups

of these symmetries and their respective maximal subgroups).

This will be further elaborated on in Section 2 of this paper,

where a visual example is provided.

In the presence of noise, it may become difficult for human

classifiers to distinguish Fedorov-type pseudosymmetries from

their genuine symmetries counterparts. This difficulty arises

from the unaided human classifier’s need to extrapolate ‘on

sight’ to a hypothetical noise-free version of the crystal

pattern.

1.3. Crystallographic image processing and the symmetry
inclusion problem

The essence of crystallographic image processing

(Hovmöller, 1992; Valpuesta et al., 1994; Wan et al., 2003;

Kilaas et al., 2005; Gipson et al., 2007; Zou et al., 2011) is the

enforcing of the 2D site/point symmetries that correspond to a

certain higher-symmetry plane symmetry group on all of the

pixel intensity values within the direct-space translation-

averaged unit cell.

The Fourier-space representation of the translation-

averaged unit cell is obtained by calculating the discrete

Fourier transform of the image intensity and the filtering out

of all non-structure-bearing Fourier coefficients. The Fourier

back transforming of the periodic structure-bearing Fourier

coefficients (that are laid out on a reciprocal lattice in the

amplitude map of the discrete Fourier transform) leads to the

translation-averaged unit cell in direct space.

Obtaining the translation-averaged direct-space unit cell is,

therefore, known as traditional Fourier filtering (Park &

Quate, 1987). The non-structure-bearing Fourier coefficients

represent the bulk of the noise in the direct-space image.

Accordingly, their filtering out enhances the signal-to-noise

ratio and structural resolution of the Fourier-filtered image.

The enforcing of the symmetries of a certain higher-

symmetry plane symmetry group on the structure-bearing

Fourier coefficients of a more or less 2D periodic image is

loosely speaking obtained by averaging over the corre-

sponding symmetry-related sets of structure-bearing Fourier

coefficients. (These sets are specific to each plane symmetry

group.) This averaging/symmetrizing enforces all site/

point symmetries of the chosen plane symmetry group onto

the translation-averaged unit cell when the symmetrized

structure-bearing Fourier coefficients are back-transformed

into a direct-space image. In effect, one has averaged in

Fourier space over all asymmetric units in all unit cells of a

selected region of a digital direct-space input image.
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When done correctly, crystallographic image processing

increases the signal-to-noise ratio and intrinsic quality1

(Paganin et al., 2019; Gureyev et al., 2019) of a digital image in

direct space significantly. Compared with traditional Fourier

filtering, the processing of a digital image in the correctly

determined plane symmetry group leads to a further increase

of the signal-to-noise ratio and an associated increase of

the structural resolution of a crystallographic study. For

(approximately) Gaussian distributed noise, crystallographic

image processing is by (approximately) the square root of the

multiplicity of the general position per lattice point more

effective in the suppression of noise than Fourier filtering

alone. (That multiplicity is equal to the number of non-

translational symmetry operations in a plane symmetry

group.)1

The knowledge of the most likely plane symmetry that a

hypothetical version of an image would possess in the absence

of noise is the precondition for the correct/optimal crystal-

lographic processing of that image. For a previously not clas-

sified crystal or crystal pattern, this knowledge has historically

not been easy to come by. Elucidating that kind of plane

symmetry group has been a long-standing problem in both the

computational symmetry subfield of computer science (Liu et

al., 2009) and electron crystallography.

The main reason that this problem had remained unsolved

for more than half a century is the existence of mathematically

defined inclusion relations between the individual crystal-

lographic symmetry groups, classes and types. In other words,

the main reason was the non-disjointness of many of the

geometric models that are to be compared with the input

image data and from which the best, i.e. statistically most

justified, model for the digital input image data is to be

selected. Symmetry inclusion relations, non-disjointness and

disjointness are explained in some detail in Section 3 of this

paper. Section 3 also presents the plane symmetry hierarchy

tree as a visualization of disjoint and non-disjoint symmetry

inclusion relationships between the translationengleiche

(Aroyo, 2016; Hahn, 2010; Burzlaff et al., 1968) maximal

subgroups and minimal supergroups of the plane symmetry

groups. The symmetry hierarchy tree of the 2D point

symmetries that are projected Laue classes is also provided

there.

1.4. Using a geometric form of information theory offers a
workaround to the symmetry inclusion problem

This author presented recently so far unique interpretation-

threshold-free solutions to identifying the genuine plane

symmetry group and projected Laue class in digital more or

less 2D periodic images in the presence of pseudosymmetries

and generalized noise (Moeck, 2018, 2019, 2021d; Moeck &

Dempsey, 2019; Dempsey & Moeck, 2020; Moeck, 2021b,c).

Fedorov-type pseudosymmetries do not present challenges to

these solutions as they are reliably identified (and can be

quantified) as long as noise levels are moderate. This will be

demonstrated in this paper.

The author’s solutions are based on Kenichi Kanatani’s

geometric form of information theory2 (Kanatani, 1997, 1998,

2004, 2005). Kanatani’s theory presents a geometric ‘work-

around’ to the symmetry inclusion relations problem and has

the added benefit that the prevailing noise level does not need

to be estimated for the comparison of non-disjoint geometric

models of digital image data. This statistical theory tackles the

inclusion problem that a less restricted, e.g. lower symmetry,

model of some input image data will always feature a smaller

deviation (by any kind of distance measure) to the input image

data than any more restricted, e.g. higher symmetry, model

that is non-disjoint (Kanatani, 1997, 1998). In other words, the

fit to some experimental data with more parameters will

always be better than a fit with fewer parameters. The adap-

tation of Kanatani’s framework to crystallographic symmetry

classifications and quantifications is described in detail in

Moeck (2018). Section 3 of this paper gives the relevant

equations and inequalities for making objective plane

symmetry and projected Laue class classifications with the

author’s methods. (The usage of those relations has led to the

results that are presented in Section 4.)

Objectivity is in this paper to be understood as only stating

what digital image data actually reveal about a crystal-

lographic symmetry without any subjective interpretation of

any symmetry distance measure. This objectivity is obtained

by using a geometric form of information theory.

Note that the information-theory-based crystallographic

symmetry classification methods of this author should be

generalized to three spatial dimensions. This is because there

is also subjectivity in the current practice of single-crystal

X-ray and neutron crystallography (Moeck, 2018). Fedorov-

type pseudosymmetries exist also in three dimensions and are

not rare in nature (Chuprunov, 2007; Somov & Chuprunov,

2009; Moeck, 2018). The symmetry inclusion relationships of

the space groups occupy the bulk of Volume A1 of Interna-

tional Tables for Crystallography (Wondratschek & Müller,

2004). Note in passing that Kanatani’s statistical theory is valid

in any dimension.

It is very well known that the structural resolution of

crystallographic studies depends on the number of structural

entities over which one averages (McLachlan, 1958). The

optimal averaging can, however, only be obtained for the

correct prior symmetry classification of the data that enter into

such studies when no prior knowledge of the crystal and/or

crystal pattern symmetry is available.

Optimal crystallographic averaging in 2D and crystal-

lographic image processing on the basis of the correctly

identified plane symmetry group are synonymous. One

174 Peter Moeck � Symmetry classifications of 2D patterns Acta Cryst. (2022). A78, 172–199

research papers

1 Crystallographic image processing is in an appendix to Moeck (2021a), i.e. an
expanded version of this paper, discussed as a form of computational imaging.
The concept of intrinsic image quality is defined there by means of an
equation. The concept of ‘Abbe resolution’ is also defined in the main part of
that open-access paper.

2 According to the Merriam–Webster Dictionary, information theory is
defined as ‘a theory that deals statistically with information, with the
measurement of its content in terms of its distinguishing essential characteristics
or by the number of alternatives from which it makes a choice possible, and with
the efficiency of processes of communication between humans and machines’
(https://www.merriam-webster.com/dictionary/information_theory).



enforces in this case all of the site/point symmetries that the

translation-averaged unit cell image needs to feature in order

to be the best representation of the input image data in the

information-theoretic sense. This best representation is often

called the ‘Kullback–Leibler best’, ‘minimal geometric Akaike

information criterion (G-AIC) value’ or simply the K-L best

geometric model that the input image data maximally support.

1.5. Prior information-theoretic distinctions between
genuine symmetries and Fedorov-type pseudosymmetries
based on a reasonable noise distribution estimate

Generalized noise (Moeck, 2018, 2019, 2021d; Dempsey and

Moeck, 2020) is defined in this paper as the sum of all

deviations from the genuine translation periodic symmetries

in a crystal’s structure and/or the imaged 2D periodic prop-

erties of the crystal. At the experimental level, generalized

noise as defined here combines all effects of a less-than-

perfect imaging of a crystal, all rounding errors and effects of

approximations in the applied image processing algorithms,

effects such as uneven staining in the cryo-electron micro-

scopy of subperiodic intrinsic membrane protein crystals,

slight deviations from exact zone-axis orientations in trans-

mission electron microscopes, and the real structure that

typically exists in addition to the ideal structure of a crystal.

This definition applies also to undisturbed and disturbed/noisy

crystal patterns in two dimensions as analyzed in this paper.

For the author’s information-theoretic crystallographic

symmetry classification methods (Moeck, 2018, 2019, 2021d;

Moeck & Dempsey, 2019; Dempsey & Moeck, 2020; Moeck,

2021b,c) to work reliably, the generalized noise needs to be

Gaussian distributed [with mean zero and standard deviation

", which Kanatani calls the ‘noise level’ (Kanatani, 2005)] to a

sufficient approximation.

The information-theoretic distinction between Fedorov-

type pseudosymmetries that are compatible with a sublattice

of the underlying Bravais lattice and the genuine symmetries

has been demonstrated already in a very short conference

paper (Moeck & Dempsey, 2019). Those symmetry classifica-

tions used a crystal pattern of low complexity to which

moderate to large amounts of Gaussian distributed noise were

added.

Dempsey & Moeck (2020) simulated the amounts and types

of noise that needed to be added to a crystal pattern with site/

point and translational pseudosymmetries for the plane

symmetry classifications by the information-theoretic method

to misclassify pseudosymmetries as genuine symmetries.

Fourteen versions of the same medium-complexity pattern

were used in that study. For each version, four classifications

were made for pattern regions of different sizes and shapes.

The addition of strictly Gaussian distributed noise, up to the

limit that a freely available computer program (GIMP 2.10,

for Windows 7 and above, downloadable from https://

www.gimp.org/) enabled, did not result in any misclassifica-

tion. Changing the aggregate composition of the noise

systematically so that it was to lesser extents approximately

Gaussian distributed resulted in a single misclassification (out

of 56 classifications in total). The misclassification happened

for the noisiest image and the smallest image-region selection.

Note that human expert classifiers would probably have made

more than one misclassification when confronted with the

same tasks (Dempsey & Moeck, 2020).

As it is time to, this paper will demonstrate statistically

sound distinctions between genuine symmetries and strong

Fedorov-type pseudosymmetries for a highly complex crystal

pattern and two of its noisy versions in Section 4.

1.6. Crystallographic symmetry classifications and image
processing in contemporary electron crystallography

The common practice in electron crystallography is to make

crystallographic symmetry classification on the basis of

subjective interpretations of the values of Fourier-space

‘symmetry deviation quantifiers’ that measure distances

between the translation-averaged input image and differently

symmetrized versions of that image (Hovmöller, 1992; Zou et

al., 2011; Gipson et al., 2007; Wan et al., 2003; Kilaas et al., 2005;

Henderson et al., 2012; Lawson et al., 2020). Following up on a

report by Henderson et al. (2012) on the first electron crys-

tallography validation task force meeting, it has recently been

noted with respect to cryo-electron microscopy that ‘ . . . as

currently practiced, the procedure is not sufficiently standar-

dized: a number of different variables (e.g. . . . threshold value

for interpretation) can substantially impact the outcome. As a

result, different expert practitioners can arrive at different

resolution estimates for the same level of map details.’ (Lawson

et al., 2020). In the context of computational imaging

(Gureyev et al., 2019; Paganin et al., 2019), ‘resolution’ in this

direct quote stands for structural resolution and intrinsic

image quality.

Two different sets of structure-bearing Fourier coefficient

based symmetry deviation quantifiers, as implemented in

the crystallographic image processing programs CRISP

(Hovmöller, 1992; Zou et al., 2011; Zou & Hovmöller, 2012)

and ALLSPACE (Valpuesta et al., 1994), are most popular in

the electron crystallography community. Neither of these two

sets of quantifiers are maximal-likelihood estimates combined

with geometric model selection-bias correction terms for

objective symmetry model selections of digital input image

data. A geometric form of information theory can, therefore,

not be based on these quantifiers in order to avoid a neces-

sarily subjective decision of what the underlying plane

symmetry most likely is (in the considered opinion of the users

of these two computer programs).

Whereas the sets of typically employed symmetry deviation

quantifiers in contemporary electron crystallography provide

quantitative numerical measures, the decision as to which

plane symmetry group should be enforced on the input image

data as part of their crystallographic image processing is with

necessity left to the electron crystallographer. In the presence

of symmetry inclusion relations, Fedorov-type pseudo-

symmetries and generalized noise, optimizing the fit between

geometric models for experimental data and the data them-

selves by minimizing symmetry deviation quantifiers and using
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overriding rules of thumb such as ‘when in doubt, choose the

higher symmetry’ (Hovmöller, 2010; Zou et al., 2011; Zou &

Hovmöller, 2012; Eades, 2012) are certainly not a foolproof

strategy for optimal model selection.

The CRISP program makes a suggestion that the user may

either accept or overwrite, but relies heavily on visual

comparisons between differently symmetrized versions of the

input image data. This author has not used ALLSPACE [in

its 2dx (Gipson et al., 2007) and Focus (Biyani et al., 2017)

incarnations] so far, as no version that runs on Microsoft

Windows compatible computers seems to exist. There are also

competing computer programs with less comprehensive

symmetry deviation quantifiers, e.g. VEC (Wan et al., 2003)

and EDM (Kilaas et al., 2005), that rely even more heavily on

visual comparisons of the translation-averaged image to its

symmetrized versions.

When the underlying plane symmetry in a noisy experi-

mental image has been underestimated, i.e. only a subgroup of

the most likely plane symmetry group has been identified, one

does not make the most out of the available image data in the

subsequent symmetry-enforcing step of the crystallographic

image processing procedure. On the other hand, if the plane

symmetry is overestimated, ‘non-information’ due to noise will

unavoidably be averaged with genuine structural information

in the subsequent crystallographic processing of the image. In

the latter case, one may have wrongly identified a minimal

supergroup of the correct plane symmetry group that the

analyzed image would possess in the absence of generalized

noise. That supergroup could be the union of a genuine plane

symmetry group and a Fedorov-type pseudosymmetry group.

It is, accordingly, very important to get the crystallographic

symmetry classification step of the crystallographic image

processing procedure just right. For that, one should only rely

on the digital image data themselves and refrain from any

subjective considerations.

With the author’s objective and interpretation-threshold-

free methods (Moeck, 2018, 2019, 2021d; Moeck & Dempsey,

2019; Dempsey & Moeck, 2020; Moeck, 2021b,c), one can now

make advances with respect to the above-stated situation in

the cryo-electron microscopy subfield that deals with subper-

iodic intrinsic membrane protein crystals, in the electron

crystallography of inorganic materials and the crystallographic

processing of digital crystal patterns in general.

1.7. Primary goal and secondary objective of this paper

The primary goal of this paper is to demonstrate

the author’s interpretation-threshold-free crystallographic

symmetry classification methods on a series of three

synthetic crystal patterns, where one is free of noise and the

other two are noisy. The achievement of this goal might

entice the computational symmetry and electron crystal-

lography communities to replace their subjectivity in crystal-

lographic symmetry classifications with the objectivity that the

information-theory-based methodology enables.

The demonstration of the benefits of the correct crystal-

lographic processing of a more or less 2D periodic image is the

secondary objective of this paper. Scanning probe micro-

scopists should take note as these demonstrations are mainly

directed to them. This is because crystallographic image

processing is just as applicable to more or less 2D periodic

images from scanning probe microscopes (Moeck, 2017, 2020,

2021b,c) as it is to images from parallel-illumination trans-

mission electron microscopes (as used in electron crystal-

lography).

Scanning probe microscopists may, however, like to correct

for scanning distortions in their images of 2D periodic samples

with tools such as Jitterbug (Jones & Nellist, 2013) before they

make crystallographic symmetry classifications and process

their images crystallographically. The achievement of the

secondary objective, i.e. demonstrating the benefits of the

correct crystallographic processing of a more or less 2D

periodic image, may eventually lead to the widespread use of

crystallographic image processing techniques in scanning

probe microscopy.

The limiting effects of noise and Fedorov-type pseudo-

symmetries in more or less 2D periodic images on the accuracy

of crystallographic symmetry classifications have so far rarely

been analyzed. As one would expect, the distinction between

genuine symmetries and pseudosymmetries of the Fedorov

type becomes more difficult with increasing amounts of noise

even when a geometric form of information theory is used

(Moeck & Dempsey, 2019; Dempsey & Moeck, 2020). This will

be demonstrated here once more in Section 4 of this paper.

That section constitutes this paper’s main part and features

four subsections containing nine numerical data tables as well

as four figures. Two of these figures demonstrate the beneficial

noise reduction and crystallographic-averaging-induced

structural resolution enhancement effects of crystallographic

image processing.

In order to facilitate direct comparisons with results

obtained by one of the two most popular traditional crystal-

lographic symmetry classification programs of electron crys-

tallography, *.hka files were exported from the CRISP

program and used for the calculation of the ratios of sums of

squared residuals of non-disjoint geometric models for the

image input data.

Section 5 of this paper compares the results of our three

crystallographic symmetry classifications (by the author’s

information-theory-based methods) with plane symmetry

group estimates by the program CRISP as applied to the same

and adjacent areas of the three synthetic crystal patterns. The

paper ends with a summary and conclusions section.

1.8. The three appendices of this paper

Appendix A provides ‘Notes on the text’. They are in

essence expanded footnotes. Analogously to footnotes, they

are in the main text marked by superscripts Ax on a key word,

where x is an integer starting with unity. For example, a brief

account of the physical creationA1 of the undisturbed crystal

pattern that is analyzed in this paper is given in that appendix

as note A1, as it is the first of such notes. From the account in

that particular end-note, it is obvious that the accurate
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symmetry classification of the crystal pattern in Fig. 1 can only

be plane symmetry group p4. Strong pseudosymmetries of the

Fedorov type are present in this pattern that human classifiers

will, at least at first sight, most likely misinterpret as the

genuine symmetries of plane symmetry group p4gm.

Appendix B presents the formulae for ad hoc defined

confidence levels for classifications into minimal supergroups

of the genuine symmetries for the special case that all

geometric models of the digital input image data are based on

the same number of structure-bearing Fourier coefficients.

Outlooks on ongoing developments of the information-

theory-based crystallographic symmetry classification and

quantification methods and some of their potential applica-

tionsA2 are provided in Appendix C.

2. Fedorov-type pseudosymmetries illustrated on a
noise-free synthetic pattern

Fig. 1 shows a slightly enlarged reproduction of a crystal

pattern that originated with the artist Eva Knoll (Knoll, 2003).

There are about 15.5 translation periodic motifs in the digital

representation of this particular graphic work of art in Knoll’s

paper.

After expansion by periodic motif stitching of a digital

representation of the original artwork as presented in Knoll

(2003), that pattern featured approximately 144 primitive unit

cells in total. Approximately 16 of these unit cells are shown in

Fig. 1. The computer program Image Composite Editor

(Microsoft ICE 2.0, Image Composite Editor, for Windows

Vista SP2, 7, 8 and 10) was used for the periodic motif

stitching. The expanded image/crystal pattern is provided in

the supporting material of this paper in the *.jpg format (1160

by 1165 pixels with 24 bit depth, and 413 058 bytes) as well as

in the uncompressed *.tif format (1160 by 1165 pixels with 32

bit depth, 120 by 120 d.p.i., resolution unit 2, color repre-

sentation sRGB, attribute A, and 5 442 642 bytes). Just as in

Dempsey & Moeck (2020), the periodic motif stitching was

done in order to enable more precise crystallographic

analyses.

The stitched/expanded crystal pattern (of which Fig. 1

shows a small section) serves in this paper as the basis of three

synthetic patterns that are to be classified with respect to their

crystallographic symmetries and Fedorov-type pseudo-

symmetries. The two per design noisy versions of the crystal

pattern (in the series of analyzed patterns) are processed

crystallographically in order to demonstrate that technique’s

benefits with respect to the noise suppression and site/point

symmetry enforcing of such a processing.

Because the physical piece of graphic art from which the

digital pattern in Fig. 1 was created is hand made,A1 none of

the 2D translation compatible crystallographic symmetries of

the Euclidean plane are strictly speaking present as they are

only mathematical abstractions. It is, however, standard

practice to assign a plane symmetry group to such a crystal

pattern as one would also do for any sufficiently well resolved

image from a real crystal in the real world, see Section 1.2

above. That symmetry group of the pattern or image is per

definition the one that is least broken by structural, sample

preparation, imaging and image processing imperfections

(generalized noise).

For the purpose of the crystallographic symmetry classifi-

cation, the assumption is made that the imaging and image

processing imperfections of the crystal pattern in Fig. 1 are

negligible and that there are no structural imperfections/

defects that are intrinsic to the represented physical object.

The generalized noise in that pattern is, therefore, negligible

and we call the corresponding pattern the noise-free member

of a series of three crystal patterns that are to be classified with

respect to their crystallographic symmetries and Fedorov-type

pseudosymmetries in this paper.

A human expert classifier would most likely assign plane

symmetry group p4gm to the crystal pattern in Fig. 1 at first

sight because approximate fourfold and twofold rotation

points as well as mirror and glide lines are all visibly recog-

nizable in their required spatial arrangements in all of the 2D

translation periodic unit cells. (This author assigned plane

symmetry group p4gm to the pattern in this figure as well at

first sight, but corrected his mistake after a more careful visual

analysis.)

The different types of visually recognizable point/site

symmetries in each individual unit cell are probably broken by

slightly different amounts, but these differences appear to be

so minor that a human being may just assume they are all

broken by the same amount. Under this assumption, plane

research papers

Acta Cryst. (2022). A78, 172–199 Peter Moeck � Symmetry classifications of 2D patterns 177

Figure 1
Section of an expanded digital version of the graphic artwork ‘Tiles with
quasi-ellipses’ (1992, acrylic on ceramic) by Eva Knoll. Histogram of the
whole crystal pattern as inset. The vertical thin line and descriptive
annotations in the histogram are due to the computer program CRISP.
Note for references below the ‘bright bow tie’ feature with a pixel
intensity of around 255, and the ‘dark curved diamond’ feature with an
intensity level of around 21. The histogram entries are explained in the
expanded online version of this paper (Moeck, 2021a).



symmetry group p4gm would indeed underlie the completely

symmetric idealization of the crystal pattern in Fig. 1. The

rather sharp peaks in the histogram in Fig. 1 are to be inter-

preted as genuine characteristics of the underlying crystal

pattern since no noise was added to deliberately disturb this

pattern.

The image-pixel-value-based classification of this crystal

pattern with the author’s method reveals, however, plane

symmetry groups p2 and p4 as genuine, with p2 least broken

being the anchoring group, and the Fedorov-type pseudo-

symmetry groups p1g1, p11g, c1m1 and c11m as quantitatively

more severely broken than the p2 and p4 symmetries. These

pseudosymmetries combine with the genuine symmetries to

form the two minimal pseudosupergroups p2gg and c2mm, as

well as their respective minimal pseudosupergroup p4gm.

(With hindsight, this is as it must be given the sequence of

creative processesA1 that resulted in this particular graphic

piece of art.) Section 4 of this paper gives the details of the

corresponding analysis.

The point/site symmetry of the centers of the conspicuous

bright ‘bow ties’ in this pattern is visibly no higher than point

symmetry group 2, which is one of the maximal subgroups of

2mm. Site symmetry 2mm is, on the other hand, one of the

minimal supergroups of point symmetry group 2, but visibly

more severely broken in the crystal pattern in Fig. 1.

This becomes even clearer in Figs. 2 and 3. Approximately

four primitive (or two centered) unit cells of the pattern in Fig.

1 are displayed in Fig. 2 after translation averaging by Fourier

filtering.A3 Note that each bright bow tie in Fig. 2 is shared

between two adjacent unit cells that are based on what seems

to be a square Bravais lattice. The centers of the bright bow

ties are at fractional unit cell coordinates 1
2, 0, 1

2, 1, 0, 1
2 and

1, 1
2, as marked in Fig. 2.

These points feature visually the approximate site symmetry

group 2 at best, rather than 2mm, which would be required if

the underlying plane symmetry group were to be c2mm or

p4gm. The observed site symmetry 2 at these fractional unit

cell coordinates is, on the other hand, compatible with plane

symmetry groups p2, p2gg and p4.

At the fractional unit cell coordinates 0, 0, 1, 0, 0, 1 and

1, 1 as well as 1
2,

1
2 in Fig. 2, there are also approximate fourfold

rotation points at the centers of dark ‘curved diamonds’ so

that a p4 or p4gm classification by a human expert is probably

the best anyone could come up with when the slight differ-

ences in the breaking of the individual symmetry operations

are not noticed and quantified. The genuine plane symmetry

group of this pattern can, however, only be p2, p2gg or p4

when the visible site/point symmetry around the centers of the

bright bow ties is taken into account.

Fig. 3 zooms into the translation periodic motif of Fig. 2 and

features a single bright bow tie and its immediate surrounding.

Both of the arrows in Fig. 3 point to positions in the motif

where the tips of the bright bow ties end and meet straight

edges from the gray ‘right angle ruler’ parts of the motif. There

is approximately a 20% difference in the distance of these

points from the horizontal and vertical edges of the gray right-

angle-ruler shaped motif parts, so that there is definitively no

mirror line from the top-right corner to the bottom-left corner

in this figure. Such a mirror line would be required for the
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Figure 2
Approximately four primitive (or two centered) translation-averaged
unit cells of the crystal pattern in Fig. 1 after Fourier filtering over
approximately 88 stitched-together primitive unit cells and using the
strongest 956 structure-bearing Fourier coefficients in the Fourier back-
transform to direct space. Selected fractional unit cell coordinates are
labeled.

Figure 3
One bright bow tie in a close-up of Fig. 2. There is probably no longer an
argument that the point symmetry of this feature is at best point group 2.



whole motif to be part of a primitive unit cell with plane

symmetry group p4gm or a centered unit cell with plane

symmetry group c2mm.

3. Pertinent equations, inequalities, plane symmetry
and 2D Laue class hierarchy trees, and their usages

Kanatani’s G-AIC relies on the noise being approximately

Gaussian distributed. For that kind of noise, the residuals need

to be sums of squares of the differences between the input

data and geometric models for those data. Since crystal-

lographic symmetry classifications are best done in Fourier

space, the maximal-likelihood estimate for approximately

Gaussian distributed noise in more or less 2D periodic

patterns takes the form of the sums of squared residuals of

the complex structure-bearing Fourier coefficients for plane

symmetry group classifications. For projected Laue class

classifications, they take the form of the sums of squared

residuals of the amplitudes of those Fourier coefficients.

Equation (1) gives the sum of squared residuals of the

complex Fourier coefficients of a symmetrized (geometric)

model of the input image data with respect to the translation-

averaged-only (Fourier filtered) version of these data:

J
_

cFC ¼
PN
j¼1

ðFj;trans � Fj;symÞ
�
ðFj;trans � Fj;symÞ; ð1Þ

where (.)* stands for the complex conjugate of the difference

of a pair of complex numbers (.). The sum is over the differ-

ences of all N structure-bearing Fourier coefficients with

matching Laue indices, and the subscripts on the right-

hand side stand for translation averaged and symmetrized,

respectively. The subscript on the left-hand side stands for

complex Fourier coefficients. Note that there is a zero sum

of residuals per equation (1) for the case of Fj,trans = Fj,sym, i.e.

the translation-averaged-only model of the input image data,

which features plane symmetry group p1.

The sum of squared residuals of the amplitudes of the

Fourier coefficients is calculated in an analogous manner from

the real-valued amplitudes of the structure-bearing Fourier

coefficients:

J
_

aFC ¼
PN
j¼1

Fj;trans

�� ��� Fj;sym

�� ��� �2
; ð2Þ

where the subscript on the left-hand side stands for amplitude

of Fourier coefficients.

Note again that the sum of residuals is zero when all of the

translation-averaged and symmetrized Fourier coefficient

amplitudes with matching Laue indices are equal to each

other. This happens for the translation-averaged-only model

of the input image data, which features point symmetry group

2 due to the Fourier transform being centrosymmetric.

Projected Laue class 2 features, accordingly, a zero sum of

amplitude residuals in the data tables that are shown in

Section 4 of this paper.

In order to restrict the sums of squared residuals to small

numbers, the structure-bearing Fourier coefficients of the

input image intensity and their symmetrized versions are in

this paper normalized through division by the maximal

amplitudes that the CRISP program provides for both the

translation-averaged model and the symmetrized models of

the input image data in both equations (1) and (2).

What follows below is valid for classifications into both

plane symmetry groups and projected Laue classes. The same

equations and inequalities as well as analogous considerations

concerning the plane symmetry group hierarchy and the

hierarchy of 2D point groups that are projected Laue classes

apply, so that the subscripts cFC and aFC on the sums of

squared residuals from equations (1) and (2) are dropped

below. Two different symmetry hierarchy trees will, however,

be applicable. The first one for plane symmetry groups is

presented in Fig. 4(a) below. The second one is given in Fig.

4(b) for projected Laue classes.

Kanatani’s G-AIC has the general form

G-AICðSÞ ¼ J
_

þ 2ðdN þ nÞ"
_2
þOð"

_4
Þ þ . . . ; ð3Þ

where J
_

is a sum of squared residuals, as for example given in

equations (1) and (2), for the geometric model S, d is the

dimension of S, N is the number of data points that represent

the model S, n is the number of degrees of freedom of S, and "
_2

is the variance of a generalized noise term, which obeys a

Gaussian distribution to a sufficient approximation. The Oð"
_4
Þ

term in (3) represents unspecified terms that are second order

in "
_2

, while the ellipsis indicates higher-order terms that

become progressively smaller.

For small and moderate amounts of generalized noise, it is

justified to ignore all of the higher-order terms in (3),

G-AICðSÞ ¼ J
_

þ 2ðdN þ nÞ"
_2
; ð4Þ

because they will make only minor contributions to the G-AIC

values of all geometric models. The number of data points, N,

can either be constant for all geometric models in a set of

models or differ from model to model but should in the latter

case be on the same order. The dimension of the model is

defined by the geometric type of model. [Note in passing that

Kanatani refers to the equivalent of (4) as normalized

geometric AIC involving normalized residuals and normalized

covariance matrices that are isotropic in his monograph, and

designates it as AIC0(S) (Kanatani, 2005).]

Equation (4) is to be interpreted as a ‘balanced geometric

model residual’ for geometric model selections that is well

suited to deal with symmetry inclusion relations. A non-

disjoint and less constrained model, which is lower symmetry,

will always fit the input data better than the more constrained

model that features a higher non-disjoint symmetry. The J
_

value of the less constrained (more general) model that is in a

non-disjoint relationship with a higher-symmetry model will,

therefore, be smaller than its counterpart for the more

constrained model. In other words, the more general model

fits the data better than the more restricted model. This is

because the more general (less constrained) model has more

degrees of freedom.
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As long as the G-AIC value of a more constrained (more

symmetric) model, subscript m, is smaller than that of the less

constrained (less symmetric) model, subscript l, the former

model is a better representation (with more predictive power)

of the input image data than the latter:

G-AICðSmÞ<G-AICðSlÞ: ð5Þ

The rational/objective geometric model selection strategy is

to minimize the G-AIC values (rather than only the sums of

squared residuals) for a whole set of geometric models by

means of repeated applications of inequality (5). As there are

two models, Sm and Sl, in (5), one sets this inequality up for

non-disjoint pairs of geometric models, one at a time, and tests

if the inequality is fulfilled.

The geometric model selection-bias correction term

2ðdN þ nÞ"
_2

in equation (4) will for a less constrained model

be larger than its counterpart for a more constrained model

(with equal N and d). In other words, the better fitting, less

constrained, model features a higher ‘geometric model selec-

tion penalty’ than its worse fitting, more constrained, coun-

terpart. This kind of interplay between fitting the input image

data better at the expense of a higher model selection penalty

provides the basis for objective geometric model selections by

minimizing their G-AIC values over a complete set of

geometric models.

The fulfillment of inequality (5) allows for a more

constrained/symmetric model of the input data to be selected

in a statistically sound manner as a better representation of

the said data although its numerical fit, as measured by its sum

of squared residuals, is worse than that of the less constrained/

symmetric model. Note that the identification of which of the

two geometric models is the better representation of the input

image data is based solely on the input data themselves and

the underlying mathematics of Kanatani’s theory.

There is no arbitrarily set threshold for the identification of

the better model in the presence of a symmetry inclusion

relationship, just an inequality that needs to be fulfilled

numerically. All of the other crystallographic symmetry clas-

sification methods that were so far used in electron crystal-

lography (Hovmöller, 1992; Valpuesta et al., 1994; Wan et al.,

2003; Kilaas et al., 2005; Gipson et al., 2007; Zou et al., 2011)

and the computational symmetry community (Liu et al., 2009)

feature such thresholds.

At first sight, it would seem that estimates of "
_2

are needed

to make objective geometric model selections by the mini-

mization of their G-AIC values by means of inequality (5) and

the definition of the first-order model selection criterion (4).

Each geometric model features a different separation of the

presumed geometric information content, on the one hand,

and presumed non-information (generalized noise) content,

on the other hand.

There are, however, workarounds to estimating "
_2

that not

only identify the best possible separation of geometric infor-

mation and non-information, but also give an estimate of the

prevailing noise in the input image data. The two workarounds

take in this paper advantage of both the translationengleiche

symmetry inclusion relationships between plane symmetry

groups as shown in Fig. 4(a) and the symmetry inclusion

relationships between the 2D point groups that are projected

Laue classes as shown in Fig. 4(b), i.e. non-disjointness in

other words.

For crystallographic symmetry classifications of more or less

2D periodic images, the dimension of the geometric models is

zero (as the data are in the form of the intensity of individual

pixels that are considered to be zero-dimensional, i.e. points).

The degrees of freedom of the geometric models in this paper

depend on the number of non-translational symmetry opera-

tions in the plane symmetry groups to which the translation-

averaged input image data have been symmetrized. They are

obtained by the ratio

n ¼
N

k
; ð6Þ

where k is the number of non-translational symmetry opera-

tions, which is equal to the multiplicity of the general position

per lattice point in all plane symmetry groups. [This number is

also one of the two ordering principles of Figs. 4(a) and 4(b).]

Equation (6) and what follows from it are good approx-

imations when N is largeA4 (as in this paper). A necessary but

not sufficient precondition for N being large in Fourier space is

that a digital representation of the image to be classified

should have a large number of individual pixels in direct space.

A complex translation periodic motif with sharp edges and

strong contrast changes will produce a large number of

complex Fourier coefficients when Fourier transformed.

As already mentioned above, the number of non-

translational symmetry operations, k in (6), is one of the two

ordering principles of the hierarchy tree of the translationen-

gleiche plane symmetry groups, Fig. 4(a). This number is given

both on the left- and right-hand side of this figure and

increases from the bottom to the top of the symmetry hier-

archy tree. The other ordering principle in this figure is the

non-disjointness of maximal subgroups and minimal super-

groups of the plane symmetry groups specified for their

crystallographic settings. These symmetry inclusion relations

are in Fig. 4(a) marked by arrows between maximal

subgroups and minimal supergroups that are translationen-

gleich. The ratios of the sums of squared residuals of the

complex structure-bearing Fourier coefficients for ‘climbing

up’ from a lower level (subscript l for less symmetric) of the

hierarchy to a higher level (subscript m for more symmetric)

that is permitted by the fulfillment of inequality (5) for the

special case of equal numbers of complex Fourier coefficients

of the lower- and higher-symmetry geometric model of the

input image data (Nm = Nl) are also given in Fig. 4(a).

Translationengleich in the previous paragraph means that

the addition of a non-translational symmetry operation to the

unit cell of a lower-symmetry group, which has the status of a

maximal subgroup, results in a unit cell of a higher-symmetry

group, which is the former’s minimal supergroup. Changes

from a primitive unit cell to a centered unit cell and vice versa

are permitted (Burzlaff et al., 1968), as they represent, effec-

tively, orientation changes of symmetry operations with

respect to the conventional unit cell vectors. Analogous
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considerations apply to the hierarchy of the projected 2D

Laue classes, where there are per definition only point

symmetries to consider.

The translation-averaged geometric model of some input

image data (with plane symmetry group p1) is, for example,

non-disjoint from the c1m1 symmetrized model of these data,

as that plane symmetry group is a minimal supergroup of p1.

The centered plane symmetry group c1m1 with k = 2 is in turn

in a maximal subgroup relationship with plane symmetry

group p3m1 with k = 6, see Fig. 4(a). Whenever there is no

connecting arrow between two plane symmetry groups in Fig.

4(a) and two projected Laue classes in Fig. 4(b), that pair of

symmetry groups is disjoint.

The two ordering principles in Fig. 4(b) are analogous to

those in Fig. 4(a). The order of the 2D point group/projected

Laue class on the left- and right-hand side of the hierarchy

tree increases from the bottom to the top. Maximal subgroups

are connected to their minimal supergroups by arrows. The

ratios of the sums of squared residuals of the amplitudes of the

structure-bearing Fourier coefficients for climbing up from a

lower level of the hierarchy to a permitted higher level of the

2D point groups are also given in this figure for Nm = Nl. For

an analogous pair of geometric models with hierarchy levels

km and kl, the same ratios of squared residuals are given in

both parts of Fig. 4. This is because the same inequalities are

applicable for climbing-up tests in both hierarchy trees.

In the above-mentioned workarounds to estimating "
_2

, one

sets up inequality (5) for two non-disjoint models of the input

image data that were symmetrized to non-disjoint plane

symmetry groups, and takes advantage of the estimate

"
_2

l �
J
_

l

rlN � nl

ð7aÞ

for the square of the amount of approximately Gaussian

distributed noise in the lower-symmetry model (designated by

the subscript l). The variable rl stands in this estimate for the

so-called co-dimension in Kanatani’s framework. [In our case,

the co-dimension is equal to unity,A5 just as rbest in equation

(7b) below.]

As long as inequality (5) is fulfilled, one is allowed to climb

up in the hierarchy trees of Fig. 4. One always starts with the

lower-symmetry model that corresponds to the anchoring

group or class.

Inequality (5) is fulfilled under the conditions

J
_

m

J
_

l

< 1þ
2ðdl � dmÞN þ 2ðnl � nmÞ

rlN � nl

ð8aÞ

and

"
_

m

2

"
_

l

2 <
ð2ðdl � dmÞ þ rlÞN þ nl � 2nm

rmN � nm

: ð8bÞ

So far, we followed Kanatani’s general derivation in the

‘Model comparison by AIC’ section of his monograph (2005)

closely. Now we turn to our specific case of crystallographic
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Figure 4
(Left) Hierarchy tree of the translationengleiche plane symmetry groups with ratios of sums of squared complex Fourier coefficient residuals as insets.
(Right) Hierarchy tree of the crystallographic 2D point groups that are projected Laue classes. The inset ratios of the sums of squared residuals are valid
for equal numbers of structure-bearing Fourier coefficients of geometric models and apply to transitions from a certain kl level of the graph to a
permitted km level. Subscript l in these ratios stands for less-symmetric/constrained and subscript m stands for more-symmetric/constrained. Maximal
subgroups are connected to their minimal supergroups by arrows in both parts of this figure.



symmetry classifications of more or less 2D periodic patterns.

For our case,A5 with dm = dl = 0, rm = rl = 1 and (6), we obtain

from (8a)

J
_

m

J
_

l

< 1þ
2ðkm � klÞ

kmðkl � 1Þ
ð9aÞ

when the number of data points in both the more and the less

symmetric geometric model is the same, Nm = Nl. This

problem-specific inequality is a special case of the general

inequality (5) for rational/objective geometric model selec-

tions.

For the purpose of this paper, we need a generalization of

(9a) for the Nm 6¼ Nl case of the geometric models that we

want to compare with respect to their predictive power. This is

because we want to compare our crystallographic symmetry

classification results directly with the suggestions that the

CRISP program provides, working with the same numerical

representations of the geometric models for the input image

data that this program allows one to export. Such a general-

ization of inequality (9a) is provided in Dempsey & Moeck

(2020):

J
_

m

J
_

l

< 1þ
2ðkm � ðNm=NlÞklÞ

kmðkl � 1Þ
; ð9bÞ

and it will be used throughout the rest of this paper with Nm’

Nl and large.

Note that per inequality (9b), climbing up from the

translation-averaged-only model of the input image data to all

geometric models that have been symmetrized to minimal

supergroups of p1 is impossible, as kl = 1 in all of these cases.

[There is also a zero sum of squared complex Fourier coeffi-

cient residuals for the translation-averaged-only model,

equation (1), so that there is no inconsistency.]

One, therefore, simply assumes that there is more than

translation symmetry in the input image data and uses

inequality (9b) with kl = 2 and 3 as a minimum. After having

made that assumption, one proceeds with determining what

individual symmetry operations there are in the input image

data and to what plane symmetry group they combine.

One needs to carefully distinguish between genuine plane

symmetry groups and possibly existing Fedorov-type

pseudosymmetry groups in the input image data based on the

model pair’s J
_

m, J
_

l, km and kl values, and Nm to Nl ratio. Based

on the definitions in Section 1.2 of this paper, the least broken

symmetry at the kl = 2 or 3 levels is the first genuine symmetry

that is identified and all other genuine symmetries need

necessarily be anchored to this particular symmetry group.

In practice, one begins an objective plane symmetry clas-

sification by calculating the sums of squared residuals for all of

the geometric models that feature a multiplicity of the general

position per lattice point (number of non-translational

symmetry operations) of two and three, see Fig. 4(a). (Note

that plane symmetry groups c1m1 and c11m feature two non-

translational symmetry operations each, the multiplicity of the

general position in the centered unit cell is four, but there are

two lattice points per unit cell.)

All of the geometric models with two and three non-

translational plane symmetry operations are disjoint from

each other per definition. Combinations of the groups with

two and three non-translational plane symmetry operations

lead to the majority of plane symmetry groups that are higher

up in the hierarchy tree, Fig. 4(a).

When there is more than translation symmetry in the input

image data, at least one of the geometric models that have

been symmetrized to a plane symmetry group with two or

three non-translational symmetry operations will have a low

sum of squared residuals of the complex structure-bearing

Fourier coefficients. The plane symmetry group of that model

is necessarily non-disjoint from its minimal supergroups so

that tests of whether a climbing up in the plane symmetry

hierarchy tree is allowed by inequality (9b) can proceed until

the Kullback–Leibler best geometric model of the image input

data has been found.

By first calculating the sums of squared residuals for all

eight geometric models of the input image data that feature k

= 2 and 3, we make sure we know from which plane symmetry

group the anchoring and climbing up in the hierarchy tree of

plane symmetry groups, Fig. 4(a), shall proceed in this paper,

as long as permitted by the fulfillment of inequality (9b).

The sums of squared residuals of the complex structure-

bearing Fourier coefficients of the geometric models of the

input image data that have been symmetrized to higher-

symmetry plane symmetry groups may be calculated on an as-

needed basis. Note that the whole procedure can be

programmed and does not require visual inspections and

comparisons of differently symmetrized versions of the input

image data. This makes the information-theory-based classi-

fication techniques very different to the other plane symmetry

classification methods that are used in contemporary electron

crystallography.

Note that to conclude that a certain minimal supergroup is

a plane symmetry that minimizes the G-AIC value of a

geometric model of the image input data within a set of

models, inequality (9b) has to be fulfilled for all maximal

subgroups (and in turn their maximal subgroups). If that is not

the case, that plane symmetry is only a Fedorov-type

pseudosymmetry as it is broken to a larger extent than the

genuine plane symmetry that the hypothetical noise-free

version of the input image most likely possesses. The formally

correct crystallographic symmetry classification of a more or

less 2D periodic pattern is the plane symmetry group and

projected Laue class that minimize the respective G-AIC

values.

In the case of projected Laue classes, there is a zero sum of

squared structure-bearing Fourier coefficient amplitude resi-

duals for point symmetry group 2, see equation (2), because

the Fourier transform is centrosymmetric. The anchoring

group is, therefore, to be found at the kl = 4 or 6 levels of the

hierarchy tree in Fig. 4(b). All other considerations for finding

the K-L best projected Laue class are analogous to those for

finding the K-L best plane symmetry group.
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For consistent crystallographic symmetry classifications of

more or less 2D periodic patterns, the K-L best projected Laue

class and the K-L best plane symmetry group need to be

compatible with each other as they are based on comple-

menting aspects of the same input image data. As the example

of the noisiest classified crystal pattern below will show, it is

possible that the formally correct K-L best plane symmetry

group and formally correct K-L best projected Laue class are

crystallographically incompatible with each other. When this

happens, it signifies a partial breakdown of the information-

theoretic methodology that results from equation (4) being no

longer a good approximation of equation (3) and/or the

generalized noise not being Gaussian distributed to a suffi-

cient approximation.

A good estimate of the variance of the amount of gener-

alized noise that needs to be approximately Gaussian

distributed can be obtained after the correct crystallographic

symmetry classification has been made, i.e. the K-L best model

in the set has been identified, from

"
_2

best �
J
_

best

rbestNbest � nbest

; ð7bÞ

where the subscript ‘best’ stands for the Kullback–Leibler best

model of the input image data. This estimate is in the same

format as (7a), i.e. the representation of the estimated square

of the noise level of the geometric model that features the

lower-symmetry group or class in a pairwise model compar-

ison procedure. When the K-L best model of the input image

data has been identified, there is obviously no further climbing

up allowed in the symmetry hierarchy trees of Fig. 4. This is

because the G-AIC values inequality (5) can no longer be

fulfilled using inequalities (8a) and (8b) as well as (9a) or (9b).

The estimate in (7b) is needed for calculations of geometric

Akaike weights of a set of geometric models for the input

image data. These weights are the probabilities that a certain

geometric model of the input image data is indeed the K-L

best model in a set of geometric models. They are to be

calculated on the basis of the G-AIC values according to

equation (4) with (7b) for the noise term. This is not done in

this paper and the reader is referred to Moeck (2018) and

Dempsey & Moeck (2020) for details on how likelihoods of

geometric models are transformed into model probabilities.

Providing geometric Akaike weights is a route to deriving

uncertainty measures for plane symmetry group and projected

Laue class classifications, without which crystallographic

symmetry measurements, i.e. quantifications, are simply

incomplete (Helliwell, 2021). Another route to deriving clas-

sification uncertainty measures is to use Nm 6¼ Nl general-

izations of the confidence-level equations for selecting

minimal supergroups over their maximal subgroups, see

Appendix B.

Note that to obtain reasonable results for the geometric

Akaike weights, a normalization of the residuals, as described

in Dempsey & Moeck (2020), is mandatory when one works

with *.hka files from the CRISP program. We use the same

normalization in this paper as it is inconsequential for the

ranking of geometric models by their G-AIC values.

4. Objective crystallographic symmetry classifications
of three synthetic crystal patterns and an optimal
crystallographic-image-processing-induced noise
suppression

4.1. Details of the classification procedure as employed in
this paper

As already mentioned in the introductory Section 1.7 to this

paper, crystallographic symmetry classifications are done here

with both the author’s methods and the electron crystal-

lography program CRISP (Hovmöller, 1992; Zou et al., 2011;

Zou & Hovmöller, 2012) using the same *.hka filesA6,A7 of the

latter program. An appropriately chosen series of these files

contains all of the information on the structure-bearing

Fourier coefficients of the differently symmetrized geometric

models of the input image data that is needed for objective

classification into plane symmetry groups and projected Laue

classes.

In the CRISP program, these files are internally used to

calculate symmetry deviation quantifiers in the form of sets

of normalized amplitude and phase-angle differences of

symmetrized structure-bearing complex Fourier coefficient

sets of the input image data with respect to the structure-

bearing complex Fourier coefficient set of these data them-

selves. (Ratios of sums of odd to even Fourier coefficient

amplitudes are also calculated from these files when they are

meaningful.) The *.hka files are also used internally to create

symmetrized direct-space versions of the input image data by

Fourier back transforming for visual comparisons by the

CRISP program’s user.

These files can be interactively edited in CRISP. This allows,

for example, for restrictions of the geometric models of the

input image to a desired dynamic range of the Fourier coef-

ficient amplitudes. The program’s default value for this

dynamic range is 200. (The maximal amplitude is always set to

10 000.)

Lowering the dynamic range leads to a reduction of the

number of complex structure-bearing Fourier coefficients of

the geometric models, and we will make use of that for both

the noise-free and the modest amount of added noise pattern

in the analyzed series of crystal patterns, see Figs. 1 and 5.

Calculating the discrete Fourier transform with CRISP in its

maximal dynamic range setting resulted in 3666 complex

structure-bearing Fourier coefficients for the translation-

averaged model of the undisturbed crystal pattern that

underlies Fig. 1. The patterns that underlie Figs. 2 and 3 are, on

the other hand, restricted to the back-transform of the

strongest 956 complex Fourier coefficients without any

symmetrizing.

A limited dynamic range of the Fourier coefficient ampli-

tudes may lead to a reduction in the accuracy of the geometric

models of the input image data. As the direct visual compar-

ison of the crystal patterns in Figs. 1 and 2 suggests, this is not a
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problem in the present study. Limiting the dynamic range has,

on the other hand, the benefit of reducing ‘Fourier ripples’

around features with very strong contrast changes, as can be

seen in Fig. 2.

With a very large number of data points in the discrete

Fourier transform of some input image data with very small

amplitudes, one has to wonder if the accuracies of geometric

models of the input image data are not compromised by the

limited representation length of real numbers in a computer

program, accumulated rounding errors and numerical

approximations in the calculation of the discrete Fourier

transform.

The CRISP program also allows for restrictions of the

spatial resolution of the geometric models of the input image

data in reciprocal space. This spatial resolution is akin to the

Abbe resolution. Restricting the spatial resolution is typically

necessary for noisy crystal patterns that are to be classified and

will be done here as well for both of the noisy patterns, Figs. 5

and 6. What will be called ‘spread noise’ below is particularly

effective in reducing the number of well resolved data points

in a discrete Fourier transform, as demonstrated by Dempsey

& Moeck (2020). Without judicious restrictions of the dyna-

mical range of the structure-bearing Fourier coefficient

amplitudes and the Abbe resolution of a noisy crystal pattern,

one may produce conspicuous artifacts in the subsequent

crystallographic processing of the more or less 2D periodic

image when one works with *.hka files.

The MATLAB script hkaAICnorm, as written by a grad-

uate student of this author (Dempsey & Moeck, 2020), was

used for the extraction of the pertinent information from the

exported *.hka files. That script can be freely downloaded

(https://github.com/nanocrystallography/hkaAIC_Public) and

calculates the sums of normalized squared residuals for all of

the geometric models that are used in this study from a series

of *.hka files from the CRISP program. [As described in

Dempsey & Moeck (2020), the script works with normalized

amplitudes of the structure-bearing Fourier coefficients in

order to keep the numbers in the data tables small.]

The noise-free pattern, Fig. 1, of the synthetic crystal

pattern series is classified with respect to its plane symmetry

group and projected Laue class in Section 4.2. Section 4.3

presents the classifications of the two noisy patterns, Figs. 5

and 6, of the series.

The results of the crystallographic processing of the two

noisy patterns of the crystal pattern series are given in Section

4.4.

4.2. Classification of the noise-free pattern in the series of
crystal patterns

Table 1 lists the sums of squared residuals for a judicious

selection of geometric models of the noise-free pattern, of

which a small section is shown in Fig. 1. In all three analyses of

this paper, circular area selections with a diameter of 1024

pixels were made in direct space for the calculation of the

discrete Fourier transforms. These sections contained

approximately 88 primitive unit cells of the crystal patterns

that are to be classified.

No explicit spatial restriction was made in Fourier space for

the calculation of the entries in Table 1 as it is considered to be

free of generalized noise. The dynamic range of the Fourier

coefficient amplitudes was set to 100 in order to restrict the

number of data points N in inequality (9b) to something that is

easily managed. (This amounts to an implicit spatial resolution

restriction.)

Note that the first seven entries in this table consist of the

geometric models of the input data that feature two non-

translational symmetry operations, whereas the 8th entry

features three such operations. All of these eight models are

disjoint from each other [and there are no connecting vectors

between them in the plane symmetry hierarchy tree in Fig.

4(a)].

The subsequent three entries in Table 1 consist of geometric

models that feature four non-translational symmetry opera-

tions. The last two entries feature eight such operations and
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Table 1
Results of the hkaAICnorm MATLAB script on the noise-free pattern that underlies Fig. 1 for geometric model selections by G-AIC value minimization
using inequality (9b).

Plane symmetry
group to which the
image data have
been symmetrized

Sum of squared
residuals of
complex Fourier
coefficients

Sum of squared
residuals of
Fourier coefficient
amplitudes

No. of Fourier
coefficients in the
geometric model
of the image data

p2 0.0042 none 956
p1m1 1.8799 0.0052 937
p11m 1.8642 0.0052 937
p1g1 0.0094 0.0052 934
p11g 0.0081 0.0052 934
c1m1 0.0103 0.0053 924
c11m 0.0110 0.0053 924
p3 2.5290 1.3339 954
p2gg 0.0096 0.0052 931
c2mm 0.0119 0.0053 924
p4 0.0065 0.0021 948
p4mm 1.9558 0.0063 918
p4gm 0.0102 0.0061 912



the two corresponding models are disjoint from each other (in

the translationengleiche sense; Burzlaff et al., 1968).

The lowest sum of squared residuals of the complex Fourier

coefficients is for the crystal pattern that underlies Fig. 1

obtained for the geometric model that has been symmetrized

to plane symmetry group p2, see Table 1. The geometric model

with plane symmetry group p4 is listed in this table as the one

that has the lowest (non-zero) sum of squared residuals of the

amplitudes of the Fourier coefficients.

The symmetry in the amplitude map of the discrete Fourier

transform is for the p4 symmetry model of the input image

data point group 4 (Aroyo, 2016; Hahn, 2010), which is a

projected Laue class. For easy reference, the entries for

geometric models with plane symmetry groups p2 and p4 are

marked in Table 1 in bold.

The selection of entries in Table 1 has been made in order to

demonstrate the climbing up from a lower level of the hier-

archy of plane symmetry groups, see Fig. 4(a), to the next

higher level. The tests if such a climbing up is allowed by the

fulfillment of inequality (9b) always start at the geometric

model with the plane symmetry that has the lowest sum of

squared residuals of the complex Fourier coefficients amongst

the mutually disjoint models with two and three non-

translational symmetry operations, i.e. the anchoring group.

That starting model features always per definition a genuine

symmetry, but more genuine symmetries can potentially be

identified by the fulfillment of inequality (9b) for some of its

non-disjoint models that may combine with the first identified

genuine symmetry to form some higher-level genuine

symmetry.

As already mentioned above, the geometric model that was

symmetrized to plane symmetry group p2 features the lowest

squared residual of the complex Fourier coefficients in Table 1.

Symmetry models that are candidates for climbing up from the

geometric model that was symmetrized to p2 in the plane

symmetry group hierarchy tree, Fig. 4(a), e.g. p2mg, p2gm,

p2gg, p2mm, c2mm or p4, need to have a sufficiently small sum

of squared residuals (and G-AIC values) with respect to all of

their maximal subgroups in order to be declared genuine.

Otherwise, they can only be Fedorov-type pseudosymmetries

by definition. Geometric models of the input image data with

low (but not the lowest) sums of squared complex Fourier

coefficient residuals and two or three non-translational

symmetry operations may either reveal a genuine symmetry or

a Fedorov-type pseudosymmetry.

Plane symmetry group p4 has only one maximal subgroup,

i.e. p2, so that only one inequality fulfillment test is needed to

find out if the former is a genuine symmetry of the crystal

pattern that underlies Fig. 1 or not. For each of the other five

geometric models mentioned in the previous paragraph, one

would need to complete three inequality fulfillment tests. It is,

however, already quite clear from the entries in Table 1 that

only the models that were symmetrized to plane symmetry

groups p1g1, p11g, c1m1 and c11m, have low sums of squared

residuals (and G-AIC values) to make them reasonable

candidates for climbing-up tests to geometric models that

feature a minimal supergroup that they share with p2. The

models with plane symmetry groups p1m1 and p11m feature

very high sums of squared residuals of the complex Fourier

coefficients in Table 1 so that it is unreasonable to expect that

they could possibly combine with the geometric model that

features the p2 anchoring group. The crystal pattern that

underlies Fig. 1 can, therefore, not be classified as belonging to

plane symmetry groups p2mm, p2gm and p2mg. Analogously,

given that the entry in the second column of Table 1 is even

higher for the geometric model that was symmetrized to plane

symmetry group p3, the pattern in this figure is definitely not

hexagonal.

Table 2 gives the ratios of the sums of squared residuals of

the complex Fourier coefficients for the non-disjoint models of

Table 1 [left-hand side of inequality (9b) in the second

column] together with the maximal value that these ratios may

have [right-hand side of inequality (9b) in the third column] in

the context of minimization of the G-AIC value of the higher-

symmetry model of a pair of non-disjoint geometric models of

the input image data. The tests if climbing up to the next level

of the plane symmetry hierarchy tree is allowed consist of a

simple comparison of the numerical values in the second and

third column of Table 2, which is recorded in the fourth

column.

There is only one unconditional ‘yes’ in the fourth column

of this table, as marked by the row of entries in bold, so that

the conclusion has to be drawn that the geometric model

which has been symmetrized to plane symmetry group p4
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Table 2
Numerical values of ratios of sums of squared residuals of the complex Fourier coefficients of non-disjoint models of the noise-free pattern, Fig. 1, that
are either within their maximal allowance or not.

Left-hand side
of (9b)

Right-hand side
of (9b) Inequality (9b) fulfilled?

p2gg over p2 2.285714 2.0261506 no, blocking ascent
p2gg over p1g1 1.021277 2.0032312 yes, but due to pseudosymmetry
p2gg over p11g 1.185185 2.0032312 yes, but due to pseudosymmetry
c2mm over p2 2.83333 2.0 no, blocking ascent
c2mm over c1m1 1.155340 2.0 yes, but due to pseudosymmetry
c2mm over c11m 1.081818 2.0 yes, but due to pseudosymmetry
p4 over p2 1.547619 2.008368 yes
p4mm over p4 300.8923 1.3438819 no, blocking ascent
p4gm over p4 1.569231 1.3459916 no, blocking ascent
p4gm over p2gg 1.06250 1.3401361 yes, but due to pseudosymmetry
p4gm over c2mm 0.857143 1.3376623 yes, but due to pseudosymmetry



features the only other genuine symmetry in the crystal

pattern that underlies Fig. 1, i.e. the noise-free pattern of the

series.

It is important to realize that all genuine symmetries above

the k = 2 and 3 level must by definition be anchored to the

least broken plane symmetry group, i.e. the one with the

lowest sum of squared residuals for the complex Fourier

coefficients at the kl = 2 and 3 levels in Fig. 4(a). The fulfill-

ment of inequality (9b) for a pair of non-disjoint geometric

models that does not fulfil this overriding requirement can per

definition only signify a Fedorov-type pseudosymmetry.

The ‘strength’ of a Fedorov-type pseudosymmetry corre-

lates inversely with the sum of the squared residuals of the

complex Fourier coefficients of its corresponding geometric

model of the input image data. Plane symmetry groups p2gg

and c2mm must be Fedorov-type pseudosymmetries of the

crystal pattern in Fig. 1 because climbing up from p2 is not

permitted, see first and fourth entry in Table 2. These two

plane symmetry groups are strong Fedorov-type pseudo-

symmetries because the sums of squared complex Fourier

coefficient residuals of the corresponding two geometric

models of the input image data are low in Table 1. Their

maximal subgroups p1g1, p11g, c1m1 and c11m are even

stronger Fedorov-type pseudosymmetries as they are disjoint

from the p2 anchoring group and the corresponding geometric

models feature lower sums of squared residuals of the complex

Fourier coefficients in Table 1 than the models that represent

the minimal supergroups p2gg and c2mm.

Note that climbing-up tests for strong Fedorov-type

pseudosymmetries to the km = 4 level, i.e. p2gg and c2mm, and

up to km = 8, i.e. p4gm, result in rather low values for the left-

hand side of inequality (9b) in Table 2. This is due to the

corresponding sums of squared complex Fourier coefficient

residuals for the matching kl = 2 and 4 levels being of the same

order in Table 1. The ratios of such sums may, for strong

Fedorov pseudosymmetries, even fall below unity,A7 as shown

for the last entry in Table 2.

The identification of the projected Laue class that mini-

mizes the G-AIC value for the crystal pattern that underlies

Fig. 1 proceeds analogously. Laue class 4 has already been

identified above as the point symmetry of the amplitude map

of the geometric model that has been symmetrized to plane

symmetry group p4. Because the p4 model has the lowest

squared Fourier coefficient amplitude residual sum in Table 1,

point group 4 is the anchoring point group for the projected

Laue class classification of the crystal pattern that underlies

Fig. 1. Both this projected Laue class and 2D Laue class 2mm

feature four point symmetry operations, kl = 4, and are disjoint

from each other, see the point group hierarchy tree in Fig.

4(b).

Table 3 gives the ratios of the sums of the squared Fourier

coefficient amplitude residuals for the non-disjoint models of

Table 1 (with kl = 4) together with the maximal value that

these ratios may have for a climbing up to the km = 8 level.

Obviously, one cannot climb up from the model with projected

Laue class 4 to the non-disjoint model with projected Laue

class 4mm with km = 8 [in Fig. 4(b)], based on the numbers in

this table.

Based on the low sums of squared Fourier coefficient

amplitude residuals in Table 1, the models for projected Laue

classes 2mm and 4mm reveal pseudosymmetries in the input

image data. This is fully consistent with the identified Fedorov-

type pseudosymmetries at the plane symmetry group level.

To conclude this subsection: plane symmetry group p4

(which contains p2 as its only maximal subgroup) and

projected Laue class 4 are identified as both genuine in the

crystal pattern that underlies Fig. 1 and crystallographically

consistent with each other. The identified Fedorov-type

pseudosymmetries at the lowest level of the hierarchy tree of

plane symmetry groups are p1g1, p11g, c1m1 and c11m. These

pseudosymmetries combine with each other and the identified

genuine symmetries to form the pseudosymmetry groups

p2gg, c2mm and p4gm. There are corresponding 2mm and

4mm pseudosymmetries in the Fourier transform amplitude

map of the noise-free crystal pattern in Fig. 1, but no 4mm

pseudo-site symmetry in the direct-space unit cell of the input

image data, since the p1m1 and p11m models of these data

feature sums of squared complex Fourier coefficient residuals

that are way too large to pass climbing-up tests in the plane

symmetry hierarchy tree of Fig. 4(a).

4.3. Classifications of the two noisy patterns of the series of
crystal patterns

Figs. 5 and 6 show sections of the two synthetic patterns that

were obtained by adding approximately Gaussian distributed

noise to the crystal pattern that served as the basis of Fig. 1, i.e.

the approximately 144 periodic motif repeats containing an

expanded representation of the original graphic artwork

(Knoll, 2003) that is considered to be free of generalized noise.

The freeware program GIMP (GIMP 2.10, for Windows 7 and

above, freely downloadable at https://www.gimp.org/) was

used to add the noise.
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Table 3
Numerical values for the ratio of the sums of squared Fourier coefficient amplitude residuals of non-disjoint geometric models of the noise-free pattern,
Fig. 1, that are either within their maximal allowance or not.

Left-hand side of
inequality (9b)

Right-hand side of
inequality (9b) Inequality fulfilled?

4mm over 4 (in c2mm setting) 3 1.3438819 no, as it should
4mm over 4 (in p2gg setting) 2.90476 1.3577236 no, as it should
4mm over 2mm (in p2gg setting) 1.2115385 1.3379878 yes, but due to pseudosymmetry
4mm over 2mm (in c2mm setting) 1.1886792 1.3246592 yes, but due to pseudosymmetry



Spread noise swaps individual pixel intensities in the hori-

zontal and vertical directions by a selected number of pixels.A8

Strictly Gaussian distributed noise only changes the individual

pixel values but not their positions in the translation periodic

unit cell. The employed mixtures of strictly Gaussian distrib-

uted noise and spread noise add up to approximately Gaussian

distributed noise. (The strictly Gaussian distributed noise had

been added to the crystal pattern in Fig. 1 before the spread

noise was added with GIMP.)

The effects of the added noise are clearly visible in Figs. 5

and 6 and their histogram insets when compared with the

histogram inset in Fig. 1 and that figure itself. Compared with

Fig. 5, there is approximately five times as much added noise in

Fig. 6.

We classify the noisy crystal pattern that underlies Fig. 5

first. The dynamic range in the employed *.hka files from

CRISP was set to 100. The selection in Fourier space was set to

a 350 pixel radius (out of the maximal possible 512 pixel

radius). The combination of both of these settings resulted in a

reasonable number of Fourier coefficients in the last column

of Table 4. A consequence of these two settings is a contrast

reduction of the crystallographically processed version of this

pattern, Fig. 7 (in Section 4.4 below), with respect to the

crystal pattern in Fig. 1. These settings ensured, on the other

hand, that there are only very minor processing artifacts in the

pattern of Fig. 7.

The geometric model with plane symmetry group p2

features again the lowest sum of squared residuals of the

complex Fourier coefficients in Table 4. Also as before, the

model that was symmetrized to plane symmetry group p4

features the lowest sum of Fourier coefficient amplitude

residuals. Again, the rows for these two geometric models of

the input image data are highlighted in bold in Table 4 for easy

reference.

Analogous to Table 2, Table 5 gives the ratios of the

sums of the squared residuals of the complex Fourier coeffi-

cients for climbing-up tests. There are four unconditional

‘yes’ entries in Table 5 when the prior information on the

objective symmetry classification of the noise-free pattern of

the crystal pattern series from the previous subsection is not

used. The rows of the corresponding entries are again marked

in bold.

The preliminary conclusion from the bold rows in Table 5 is

that the genuine plane symmetry group of the noisy crystal

pattern in Fig. 5 must either be p2gg or p4. These two plane

symmetry groups are disjoint from each other, see Fig. 4(a), so

that one of these two groups has to be a Fedorov-type

pseudosymmetry per definition. The decision about which of

these two plane symmetries is genuine relies on the necessity

of the crystallographic consistency of the plane symmetry
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Figure 5
Section of the underlying crystal pattern of Fig. 1 with a moderate amount
of approximately Gaussian distributed noise added. The histogram of the
whole pattern is provided as inset. Note that there are only three broad
peaks in this histogram, whereas the noise-free histogram of Fig. 1
features five narrow peaks.

Table 4
Results of the hkaAICnorm MATLAB script on the modest amount of noise added pattern that underlies Fig. 5 for geometric model selection by G-AIC
value minimization using inequality (9b).

Plane symmetry
group to which the
image data have
been symmetrized

Sum of squared
residuals of
complex Fourier
coefficients

Sum of squared
residuals of
Fourier coefficient
amplitudes

No. of Fourier
coefficients in the
geometric model
of the image data

p2 0.0041 none 665
p1m1 1.7207 0.0041 654
p11m 1.7210 0.0041 654
p1g1 0.0059 0.0041 652
p11g 0.0066 0.0041 652
c1m1 0.0081 0.0043 655
c11m 0.0081 0.0043 655
p3 2.0554 1.3052 685
p2gg 0.0066 0.0041 650
c2mm 0.0102 0.0043 655
p4 0.0040 0.0015 648
p4mm 1.7934 0.0050 644
p4gm 0.0074 0.0050 640



classification with the Laue class classification of the noisy

pattern in Fig. 5.

The anchoring Laue class is point symmetry group 4

because the corresponding p4 symmetrized model of the noisy

pattern in Fig. 5 features in Table 4 the lowest sum of squared

residuals of the Fourier coefficient amplitudes. The point

symmetry in the amplitude maps of the discrete Fourier

transforms of the geometric models of the crystal pattern that

underlies Fig. 5 that were symmetrized to plane symmetry

groups p1m1, p11m, p1g1, p11g, c1m1, c11m, p2gg and c2mm

is point symmetry/Laue class 2mm (Aroyo, 2016; Hahn, 2010).

Table 6 is analogous to Table 3 and lists the ratios of sums of

squared Fourier coefficient amplitude residuals for the modest

amount of added noise pattern that underlies Fig. 5. The

conclusion from this table is that projected Laue class 4 is the

only genuine class as climbing up from the anchoring class

to Laue class/point group 4mm is not allowed. Crystal-

lographically consistent with this is that ascent from the

geometric model that was symmetrized to plane symmetry

group p4 to the p4gm symmetrized model of the image input

data is not allowed, see Table 5.

Note that point symmetry group 4 captures the symmetry in

the amplitude map of the discrete Fourier transform of the

noisy crystal pattern that underlies Fig. 5 better by more than a

factor of 2.7 than point group 2mm, which is at the same kl = 4

level of the hierarchy tree of Fig. 4(b). It is, therefore, without

doubt the point symmetry of the Kullback–Leibler best

geometric model of the amplitude map of that pattern.

Laue class 2mm is according to Table 6 a pseudosymmetry

at the point symmetry level and the corresponding plane

symmetry group p2gg can also only be a strong Fedorov-type

pseudosymmetry. With point group 2mm identified as

pseudosymmetry and point group 4 as the genuine symmetry

in the amplitude map of the discrete Fourier transform of the

noisy pattern in Fig. 5, there must also be a 4mm pseudo-

symmetry in this map. This is confirmed by the numerical

values in Table 6.

Note in passing that the ratio of the sums of squared resi-

duals of the complex Fourier coefficients is for the ‘p4 over p2’

row of Table 5 smaller than unity. This is probably the result of

both small accumulated calculation errors in the analysis and

slight differences in the accuracy of the representation of the

geometric models in the employedA6,A7 *.hka files from

CRISP.

There is again no 4mm pseudo-site symmetry in the direct-

space unit cell of that crystal pattern because ascent from the

geometric model that was symmetrized to plane symmetry

group p4 to its counterpart with plane symmetry p4mm is

blocked in Table 5 by a very wide margin.

Clear distinctions between genuine symmetries and

Fedorov-type pseudosymmetries were, thus, again obtained.

The added approximately Gaussian distributed noise

presented no challenge to the crystal pattern classification task

with respect to its crystallographic symmetries when the

amount of noise was modest.

The preliminary issue which of the two disjoint plane

symmetry groups, p2gg or p4, is the symmetry of the Kullback–

Leibler best model of the noisy pattern that underlies Fig. 5

was straightforwardly resolved by recognizing point symmetry

4 as the anchoring Laue class. Note that no prior knowledge of

the classification of the noise-free pattern in the series of

crystal patterns from Section 4.2 was used to reach the final

conclusions. As expected, the effect of adding noise is an

obscuring of the differences in the amounts of breakings of the

various plane symmetry groups. Adding larger amounts of

noise that is to a lesser approximation Gaussian distributed

should confirm the general trend that genuine symmetries and

pseudosymmetries in crystal patterns get more difficult to

distinguish. As we will see below, this is indeed the case.

In analogy to Tables 1 and 4, Table 7 gives the character-

istics of the geometric models for the rather noisy crystal

pattern that underlies Fig. 6. All of the sums of squared resi-

duals except those for p1m1, p11m, p3 and p4mm are high-

lighted in this table in bold. This is because, as Table 8 shows,

genuine symmetries at the plane symmetry group level can no

longer be distinguished from strong Fedorov-type pseudo-

symmetries as the result of the large amount of added noise.

Plane symmetry group p4gm is now identified as genuine

and the symmetry that most likely underlies the rather noisy

crystal pattern that underlies Fig. 6. Note that ascent in the

plane symmetry hierarchy tree of Fig. 4(a) is now permitted all

the way up to the top of the p4gm branch, since inequality (9b)
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Table 5
Numerical values of ratios of sums of squared residuals of the complex Fourier coefficients of non-disjoint models of the pattern with a moderate amount
of added noise, Fig. 5, that are either within their maximal allowance or not.

Left-hand side
of (9b)

Right-hand side
of (9b) Inequality fulfilled?

p2gg over p2 1.6097561 2.0225564 yes
p2gg over p1g1 1.1186441 2.0030675 yes
p2gg over p11g 1.0 2.0030675 yes
c2mm over p2 2.4878049 2.0 no, blocking ascent
c2mm over c1m1 1.2592593 2.0 yes, but due to pseudosymmetry
c2mm over c11m 1.2592593 2.0 yes, but due to pseudosymmetry
p4 over p2 0.9756098 2.0255639 yes
p4mm over p4 448.35 1.3353909 no, blocking ascent
p4gm over p4 1.85 1.3374486 no, blocking ascent
p4gm over p2gg 1.1212121 1.3384615 yes, but due to pseudosymmetry
p4gm over c2mm 0.7254902 1.3409669 yes, but due to pseudosymmetry



is fulfilled for all of the relevant non-disjoint geometric models

of the input image data. The single row that features a ‘no,

blocking ascent’ in the fourth column of Table 8 is, accordingly,

the only one that is not in bold font.

It is interesting to check if this classification is consistent

with the classification of the rather noisy pattern into the most

likely projected Laue class as well. Table 9 provides the basis

for checking this out. Laue class 4 is, however, still identified

by inequality (9b) as the one that minimizes the expected

Kullback–Leibler divergence. This could be due to projected
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Table 6
Numerical values for the ratio of the sums of squared Fourier coefficient amplitude residuals of non-disjoint models of the moderate amount of added
noise pattern, Fig. 5, that are either within their maximal allowance or not.

Left-hand side of
inequality (9b)

Right-hand side of
inequality (9b) Inequality fulfilled?

4mm over 4 (in c2mm setting) 3.333333 1.3353909 no, as it should
4mm over 4 (in p2gg setting) 3.333333 1.3374486 no, as it should
4mm over 2mm (in p2gg setting) 1.2195122 1.3384615 yes, but due to pseudosymmetry
4mm over 2mm (in c2mm setting) 1.1627907 1.3389313 yes, but due to pseudosymmetry

Table 7
Results of the hkaAICnorm MATLAB script on the pattern with a large amount of added noise that underlies Fig. 6 for geometric model selection by G-
AIC value minimization using inequality (9b).

Plane symmetry
group to which the
image data have
been symmetrized

Sum of squared
residuals of
complex Fourier
coefficients

Sum of squared
residuals of
Fourier coefficient
amplitudes

No. of Fourier
coefficients in the
geometric model
of the image data

p2 0.0061 none 275
p1m1 1.5353 0.0039 271
p11m 1.5320 0.0039 271
p1g1 0.0069 0.0039 265
p11g 0.0078 0.0039 270
c1m1 0.0085 0.0041 269
c11m 0.0074 0.0041 269
p3 1.7565 1.2029 306
p2gg 0.0098 0.0039 264
c2mm 0.0115 0.0041 269
p4 0.0088 0.0028 276
p4mm 1.5876 0.0053 276
p4gm 0.0109 0.0051 266

Figure 6
Section of the underlying crystal pattern of Fig. 1 with a large amount of
approximately Gaussian distributed noise added. The histogram of the
whole pattern is provided as inset. Note that all of the five narrow peaks
in the histogram in Fig. 1 are now ‘overwhelmed’ by the added noise,
resulting in a single peak that may be characterized as approximately
Gaussian distribution but with fat tails.A9

Table 8
Numerical values for the ratio of sums of squared residuals of the
complex Fourier coefficients of non-disjoint geometric models of the
pattern with a large amount of added noise.

Left-hand side
of (9b)

Right-hand side
of (9b) Inequality fulfilled?

p2gg over p2 1.6065574 2.04 yes
p2gg over p1g1 1.4202899 2.0037736 yes
p2gg over p11g 1.2564103 2.0222222 yes
c2mm over p2 1.8852459 2.0218182 yes
c2mm over c1m1 1.3529412 2.0 yes
c2mm over c11m 1.5540541 2.0 yes
p4 over p2 1.442623 1.9963636 yes
p4mm over p4 180.4091 1.3333333 no, blocking ascent
p4gm over p4 1.2386364 1.3454106 yes
p4gm over p2gg 1.1122449 1.3308081 yes
p4gm over c2mm 0.947826 1.3370508 yes



Laue class determinations being somewhat less susceptible

to added noise, especially to spread noise,A8 than plane

symmetry group classifications.

Also, there are many more calculations going into crystal-

lographic symmetry classifications with respect to plane

symmetry groups as compared with their counterparts for

projected Laue classes. Rounding errors and approximations

in the algorithms may therefore accumulate in the calculation

for plane symmetry classifications more than for their

counterparts for 2D Laue classes.

From the obvious crystallographic inconsistency that plane

symmetry group p4gm and Laue class 4 have both been

identified as K-L best representations of the rather noisy

pattern that underlies Fig. 6, one needs to conclude that the

plane symmetry classification result is incorrect (too high) and

Fedorov-type pseudosymmetries have been misinterpreted as

genuine symmetries. Note that this conclusion is informed by

prior knowledge of the crystallographic symmetry classifica-

tion of the noise-free pattern of the crystal pattern series, but

not exclusively based on that knowledge.

Crystallographic symmetry classification results as obtained

in this section were to be expected and are in line with those of

Moeck & Dempsey (2019) and Dempsey & Moeck (2020) for

other series of synthetic crystal patterns with and without

added noise that feature pseudosymmetries. The conclusion

from all three studies must be that the information-theory-

based classification methods work very well for small to

moderate amounts of noise that is to a sufficient approxima-

tion Gaussian distributed.

Methods that rely on ignoring higher-order terms in equa-

tion (3) must, however, fail when there is way too much noise

in a more or less 2D periodic pattern that is to be classified

with respect to its crystallographic symmetries. Everything

depends, of course, also on the relative complexity of a crystal

pattern and the strength of its pseudosymmetries.

The identification failure is for the crystal pattern in Fig. 6

not ‘catastrophic’ as even when a misidentification is obtained

for the most likely underlying plane symmetry group of the

noisiest crystal pattern, most human experts would have made

the same mistake. Because it is well known that Fedorov-type

pseudosymmetries are not rare in nature (Chuprunov, 2007;

Somov & Chuprunov, 2009), one needs to be extra careful with

the crystallographic processing of very noisy images from

crystals in order not to misinterpret noise as structural infor-

mation. Translational pseudosymmetries (de Gelder & Janner,

2005a,b; Somov & Chuprunov, 2009) are also not rare in

nature.

In Section 4.4, the modestly noisy pattern that underlies Fig.

5 is symmetrized to plane symmetry group p4, as this was the

crystallographically consistent Kullback–Leibler best repre-

sentation of the plane symmetry of that crystal pattern. We

will symmetrize the very noisy pattern of Fig. 6 to plane

symmetry group p4gm for demonstration purposes, although

our analysis indicated that there was a crystallographic

inconsistency, which is to be interpreted as that group being

only a pseudosymmetry group.

4.4. Results of crystallographic image processing of the two
noisy patterns of the analyzed series of crystal patterns

In order to demonstrate the benefits of the crystallographic

image processing procedure, the classification results of the

noisy patterns in Figs. 5 and 6 are now used to boost the signal-

to-noise ratio in these two crystal patterns. Fig. 7 shows

approximately 2.2 unit cells of the p4 symmetrized pattern of

Fig. 5.

The conspicuous bright bow ties in Fig. 7 feature site

symmetry 2 as perfectly as it is possible for real-world entities
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Table 9
Numerical values for the ratio of the sums of squared Fourier coefficient amplitude residuals of non-disjoint geometric models of the pattern with a large
amount of added noise.

Left-hand side of
inequality (9b)

Right-hand side of
inequality (9b) Inequality fulfilled?

4mm over 4 (in c2mm setting) 1.8928571 1.333333 no, but revealing a crystallographic inconsistency
4mm over 4 (in p2gg setting) 1.8214286 1.3454106 no, but revealing a crystallographic inconsistency
4mm over 2mm (in p2gg setting) 1.3076923 1.3370508 yes, as a result of pseudosymmetry
4mm over 2mm (in c2mm setting) 1.2926829 1.3246592 yes, as a result of pseudosymmetry

Figure 7
Approximately 2.2 primitive unit cells of the moderately noisy pattern of
Fig. 5 after crystallographic image processing with histogram as inset.



that have been derived from disturbed real-world entities by

the employed algorithmic crystallographic symmetry enfor-

cing procedure. Note that these bow ties feature point

symmetry 2 to a good approximation in Figs. 1 to 3 and 5. (This

point group represents the highest and second highest site

symmetries in plane symmetry groups p2 and p4, respectively.)

Plane symmetry group p2 was the anchoring group, i.e. the

least broken plane symmetry at the kl = 2 or 3 level of Fig. 4(a).

The sum of squared residuals of the complex structure-bearing

Fourier coefficients of the p2 symmetrized model of the crystal

pattern in Fig. 5 was, accordingly, the lowest in Table 4.

Note how much of the added noise has been removedA10 by

the crystallographic image processing by a visual comparison

between the patterns in Figs. 5 and 7. This becomes also clear

by a comparison of the histogram insets of both figures.

The overall contrast in Fig. 7 is lower than in Fig. 1. There

are also very minor (almost imperceptible) processing arti-

factsA11 in this crystal pattern. These are small prices to pay in

the opinion of the author for a significant enhancement of the

signal-to-noise ratio and intrinsic image quality by means of

the crystallographic processing of a noisy image. (To see these

artifacts more clearly, it might be better to look at the

computer screen of the online version of this paper in a high

magnification rather than directly at a printout.)

Essentially the same can be said about the crystal-

lographically processedA10 version of the very noisy pattern

that underlies Fig. 6. The contrast in the crystallographically

processed version of this pattern is in Fig. 8 even lower (so that

processing artifacts are imperceptible). This is mainly a

consequence of using a smaller number of symmetrized

complex Fourier coefficients for both the crystallographic

symmetry classification and the transformation back into

direct space. Note that Fig. 8 shows the bright bow ties quite

clearly, whereas they were visually unrecognizable (in the

absence of prior knowledge) in the crystal pattern that

underlies Fig. 6.

Because plane symmetry group p4gm has been enforced on

the very noisy pattern in Fig. 6, strong Fedorov-type pseudo-

symmetries have been rendered visibly indistinguishable from

genuine symmetries in direct space. The conspicuous bow ties

feature in Fig. 8, therefore, point symmetry 2mm, although the

corresponding site symmetry in the undisturbed crystal

pattern was at best point group 2, as clearly visible in Figs. 2

and 3. Noise in the image has, thus, been misinterpreted as

structure as part of a crystallographic image processing that

ignored a detected crystallographic inconsistency.

The large amount of added noise pattern, Fig. 6, was crys-

tallographically processed in plane symmetry group p4gm, Fig.

8, for demonstration purposes although the projected Laue

class classification, i.e. 2D point group 4, identified a problem

with the p4gm classification that is caused by the large amount

of added noise. This was done here for the sake of a demon-

stration of what happens when one symmetrizes a more or less

2D periodic pattern to a plane symmetry group that is not

crystallographically consistent with the corresponding 2D

Laue class classification by the information-theory-based

methods.

The increased narrowness of the peaks in the histogram

inset of Fig. 8 with respect to their counterparts in the histo-

gram inset of Fig. 7 is due to averaging over twice as many

(wrongly identified) asymmetric units during the crystal-

lographic image processing. This wrongful averaging created

sites in the translation-averaged unit cells that now feature

point symmetry group 2mm at the fractional unit cell coor-

dinates 1
2, 0, 0, 1

2,
1
2, 1 and 1, 1

2, as labeled in Fig. 2.

Nevertheless, the suppression of the noise in both of the

noisy patterns is quite impressive when judged from the

histogram insets in Figs. 5 and 6. Again, scanning probe

microscopists should take notice of this fact as crystallographic

image processing on the basis of objective crystallographic

symmetry classifications is now available to them as well. They

need, however, to be wary of Fedorov-type pseudosymmetries

that are easily misinterpreted as genuine symmetries when

noise levels are high. Scanning probe microscopists in general

and structural biologists who analyze subperiodic intrinsic

membrane protein crystals should heed the advice that noisy

images are only to be symmetrized to plane symmetry groups

that are crystallographically consistent with the projected

Laue class classification of a more or less 2D periodic image.

5. Comparisons of our classification results with
suggestions by the CRISP program and associated
comments

The objectively obtained crystallographic symmetry classifi-

cation results of Section 4 are summed up in Table 10 and are

now compared with the results of a traditional classification
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Figure 8
Approximately 2.2 primitive unit cells of the rather noisy pattern of Fig. 6
after crystallographic image processing with histogram as inset. Note the
reduction in contrast and spatial resolution with respect to both the
patterns in Figs. 1 and 7.



with the electron crystallography program CRISP, Table 11. It

is clear from the latter table that the CRISP suggestions do not

make distinctions between genuine symmetries and Fedorov-

type pseudosymmetries.

Note that the comparison of the classification results is

based on exactly the same structure-bearing Fourier coeffi-

cients and their symmetrized versions as facilitated by using

the same *.hka files (without any manual editingsA6,A7) in

both types of classifications for the same pattern area selec-

tions.

As one can interactively test adjacent pattern areas for their

CRISP program classification suggestions, one can not only

assess the accuracy of that program’s classification suggestions

but also their precision. It was found that adjacent areas in

both the noise-free and moderate amount of noise added

pattern resulted in either p4gm or p2gg classifications with

CRISP. The p4gm suggestion by CRISP for the noisiest crystal

pattern did, however, not change with the selected pattern

regions.

At least the noise-free pattern in the series should be

homogeneous so that all adjacent image areas should be

classified as featuring the same plane symmetry. One has to

note that a large number of calculations goes into a plane

symmetry classification so that CRISP’s symmetry deviation

quantifiers for different geometric models of the input image

data are indeed slightly different for each different crystal

pattern region.

The p2gg classification suggestions by CRISP are consistent

with the bright bow ties featuring a site symmetry that is no

higher than point symmetry group 2, as clearly revealed in

Figs. 2 and 3. These classification suggestions assign point

symmetry group 2 as well to the centers of the dark curved

diamonds in Fig. 1, which is a site symmetry underestimation

according to the classification results that were obtained with

the information-theoretic methods. The strong Fedorov-type

pseudosymmetries p1g1 and p11g in the selected regions of

the noise-free and moderately noisy crystal patterns were by

CRISP misinterpreted as genuine symmetries.

For the modest amount of added noise pattern, see the

second entry in Table 11, the p2gg classification is consistent

with the CRISP-derived lattice parameter set of a = 97.1

pixels, b = 97.0 pixels and � = 90.0� for the crystal pattern that

underlies Fig. 5. The small difference in the magnitude of the

unit cell vectors should probably be ignored based on what has

been shown by Moeck & DeStefano (2018).

Crystallographic symmetry classifications with the CRISP

program rely in practice heavily on visual comparisons

between the translation-averaged (Fourier filtered) and

differently symmetrized versions of the input image data by an

expert practitioner of electron crystallography. Faced with a

p2gg classification by CRISP and a 2D Bravais lattice that is

almost of the square type (as obtained for the moderate

amount of added noise pattern), most electron crystal-

lographers would probably have simply overwritten that

suggestion after visual inspections and concluded that the

correct plane symmetry group is p4gm (based on a square unit

cell). In doing so, they would have discounted the possibility of

a very strong translational pseudosymmetry or metric

specialization (Moeck & DeStefano, 2018).

As mentioned above repeatedly, most human experts would

most likely have classified all three synthetic patterns of the

series as belonging to plane symmetry group p4gm because it

would not occur to them that distinctions between genuine

symmetries and pseudosymmetries might be necessary. As the

analyses in the preceding sections demonstrate, p4gm classi-

fications by CRISP for the noise-free and large amount of

added noise patterns, see Table 11, constitute overestimations

of the plane symmetry that is genuinely there, i.e. p4, due to

Eva Knoll’s handiwork.A1

Using the author’s information-theory-based methods, no

visual comparisons between the translation-averaged and

differently symmetrized versions of the input image data are

necessary. Crystallographic symmetry classifications can,

therefore, be made without human supervision, but under the
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Table 10
Plane symmetry and projected Laue class classifications of the analyzed series of patterns by the author’s methods.

Crystal pattern Plane symmetry group Laue class

Free of added noise, that underlies Fig. 1 p4, with strong p1g1, p11g, c1m1, c11m and somewhat weaker
p2gg, c2mm, p4gm Fedorov-type pseudosymmetries

4, 2mm and 4mm pseudosymmetries

Moderate amount of added noise, that underlies Fig. 5 p4, with strong p1g1, p11g, c1m1, c11m, p2gg and somewhat
weaker c2mm, p4gm Fedorov-type pseudosymmetries

4, 2mm and 4mm pseudosymmetries

Large amount of added noise, that underlies Fig. 6 p4, all Fedorov-type pseudosymmetries at the plane symmetry
group level were misidentified as genuine symmetries, but
the identification of point symmetry 4 as the anchoring
Laue class revealed their true nature and confirmed p4 as
the crystallographically consistent plane symmetry group
classification

4, 2mm and 4mm pseudosymmetries

Table 11
CRISP program suggestions for the plane symmetry classifications of the
analyzed series of patterns.

Crystal pattern

Plane
symmetry
group

Free of added noise, that underlies Fig. 1 p4gm
Moderate amount of added noise, that underlies Fig. 5 p2gg
Large amount of added noise, that underlies Fig. 6 p4gm



currently necessary assumption that there is indeed more than

translation symmetry in a noisy image.

To employ crystallographic image processing techniques,

the researcher no longer needs to be an electron crystal-

lographer. This fact allows sufficiently well resolved more or

less 2D periodic images from a wide range of crystalline

samples that are recorded with different types of microscopes

to be processed crystallographically. Previous successes in the

crystallographic processing of images from scanning tunneling

and atomic force microscopes are quoted by Moeck (2021b,c)

and shown in Moeck (2017, 2020).

6. Summary and conclusions

Information-theory-based crystallographic symmetry classifi-

cation methods for plane symmetry groups and projected

Laue classes have been demonstrated on three synthetic

crystal patterns. The classifications were for the two noisy

patterns complemented by the showing of the corresponding

patterns and their histograms before and after their crystal-

lographic processing. Note that these pairs of crystal patterns

needed to be shown in this paper for demonstration purposes,

but crystallographic image processing by the information-

theoretic methods can proceed without prior visual inspec-

tions of such patterns by human beings.

It is concluded that the information-theory-based classifi-

cation methods are statistically sound and superior to all other

existing methods, including the visual insights of human expert

classifiers as far as their accuracy at first sight is concerned.

Information-theory-based methods should be developed for

crystallographic symmetry classifications and quantifications

in three spatial dimensions as there is also subjectivity in the

current practice of single-crystal X-ray and neutron crystal-

lography.A12 The detection of noncrystallographic symmetries

(defined in the introductory Section 1.1 as being incompatible

with translation symmetry) is beyond the scope of the

demonstrated methods and there are no plans by this author

to try to tackle that kind of problem.

6.1. Notes added in proof

(1) As quoted in Moeck (2018, 2019), there is a direct space

G-AIC approach by Xanxi Liu and co-workers to plane

symmetry group classifications of more or less 2D periodic

patterns. The number of analyzed translation periodic tiles, t,

in the crystal pattern enters in that approach the direct-space

analog to (9a) so that

J
_direct

m

J
_direct

l

< 1þ
2ðkm � klÞ

kmðtkl � 1Þ
ð9cÞ

results. There is no translation-averaged unit cell and with that

no p1-symmetrized model of the input image data in that

approach, so that the benefits of substantial noise reductions

by working exclusively with the periodic structure-bearing

Fourier coefficients vanish. For t > 1, a non-zero ratio of sums

of squared direct-space pixel-intensity residuals for ascent to a

geometric model of the data with km = 2 or 3 is, however,

defined by (9c). (This might be the onlyA10 advantage of

working in direct space.) When all of the sums of squared

complex Fourier coefficient residuals [equation (1)] at the km

= 2 or 3 level of the plane symmetry hierarchy tree (Fig. 4a)

are rather high, using inequality (9c) with km = 2 or 3, kl = 1

and t > 1 could either help with the identification of the

anchoring plane symmetry group or provide a statistical proof

that there is only translation symmetry in the crystal pattern.

This would, however, work reliably only for low and moderate

levels of approximately Gaussian distributed noise. The

propensity of misidentifying Fedorov-type pseudosymmetries

as genuine symmetries increases in a direct-space approach

more strongly with the noise level than in the present study

(which was performed exclusively in Fourier space).

(2) If one were to have a trustworthy a priori estimate of

the noise level, "a priori, from the presumed accuracy of the

geometric data acquisition process, Kanatani’s framework

allows for a replacement of inequality (5) with the following

inequality:

J
_

ðSmÞ � J
_

ðSlÞ< 2½ðdl � dmÞN þ ðnl � nmÞ�"
2
a priori; ð10aÞ

which reduces for our case, dl = dm = 0, and assuming Nm = Nl

= N to

J
_

ðSmÞ< J
_

ðSlÞ þ 2N"2
a priori

1

kl

�
1

km

� �
: ð10bÞ

Note that kl does not need to be an integer larger than unity in

this formulation of inequality (5). Kanatani (2005) remarked

that ‘it is very difficult to predict the noise level . . . a priori in

real situations’ and that the noise level ‘can be estimated a

posteriori only if the hypothesis is true’. (Italics as in the

original, the ellipsis being due to Kanatani using another

symbol for the noise level.) Note that when one has ascended

as high as it was possible in the hierarchy trees of Figs. 4(a) and

4(b) by using inequality (9a), one has with estimate (7b) a

numerical value for the square of the noise level for the

geometric model that is maximally supported by the input

image data, the crystallographic symmetry restrictions of the

Euclidian plane, and the shifting of all deviations from these

restrictions into an all-inclusive generalized noise term. The

selected K-L best geometric model of the input image data is

as close to the ‘real truth’ as one could get under the quite

reasonable assumptions that have been made. An analog to

inequality (10b) can with the estimate (7b) for the square of

the a posteriori noise level and (6) be used as a consistency

check of a crystallographic symmetry classification with

J
_

ðSmÞ< J
_

ðSlÞ þ
2J
_

best

1� ð1=kbestÞ

1

kl

�
1

km

� �
: ð11Þ

Such checks were not part of this study (as Nm 6¼Nl for most of

our cases). Note that (11) is defined even for the translation-

averaged (Fourier filtered/p1-symmetrized/projected Laue

class 2) geometric models of the input image data.

(3) The development of an information-theory-based

method for the classification and quantification of electron
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diffraction patterns, as motivated at the end of Appendix C2,

progresses well. The first objective projected point symmetry

classifications and quantifications results were obtained from

an experimental spot pattern, as discussed in Moeck & von

Koch (2022a,b).

APPENDIX A
Notes on the text

A1. The artist Eva Knoll painted a single asymmetric unit onto

a single ceramic tile by hand, see the last appendix in Moeck

(2021a). (That reference is to a significantly expanded version

of this paper where the artist describes the genesis of ‘Tiles

with quasi-ellipses’ in her own words and gives a reference to

her portfolio.) The painted asymmetric unit featured a broken

mirror line across one of its two diagonals, but covered the

whole ceramic tile. That tile had a square shape (to a very

good approximation) and was 6 inches (15.24 cm) long on its

edges. For a color reproduction of the original painted tile, see

Moeck (2021a).

The artist took a color photo of that square and produced

multiple copies of that photo with the shape of squares of the

same size. Sets of four photos of the tile were assembled into

fourfold larger squares with fourfold rotation points at their

centers by making sure that the broken mirror lines run along

the fractional coordinates x, x + 1
2, �x, �x + 1

2, �x + 1
2, x and

x + 1
2, �x of the thus-created unit cell. (The multiplicity of the

general position in this primitive unit cell is four.) It is quite

remarkable that three pairs of slightly broken glide lines were

created in the unit cell as a result of this assembly process.

The so-created (fourfold larger) unit-cell squares were then

laid out on a square Bravais lattice without overlaps or gaps.

This created fourfold rotation points at each of the four

vertices of the unit cell and twofold rotation points in the

middle of each of its four edges.

The whole piece of Eva Knoll’s graphic artwork consists,

thus, of a translation periodic array of four properly assembled

photocopies of her original tile (asymmetric unit). The graphic

artwork features plane symmetry group p4 as the result of its

creation process. (The genuine site symmetries in the assembly

are point groups 4 and 2, which are non-disjoint.)

The artistically sophisticated distribution of paint, the

broken mirror line in the original asymmetric unit, and the

two- and fourfold rotation points that resulted from the

translation-periodic assembly process combined to several

Fedorov-type pseudosymmetries. The latter give the visual

impression that the graphic artwork features a unit cell with

plane symmetry group p4gm, at least at first sight.

Owing to the large reduction in the size of the photocopies

of the original tile, the diagonal pseudo-mirror line of the

original tile feigns a genuine mirror line pretty well, at least at

first sight. The grayscale reproduction of the original digital-

color artwork in Knoll (2003) has an edge length of 5.7 cm

only (and is of a square shape). There was, thus, a linear

reduction of the edge length of the original painted tile to one

of its digital photocopy counterparts by approximately a factor

of 21.

The artist also created random assemblies of photocopies of

her original tile without gaps or overlaps, see the last appendix

in Moeck (2021a) for a color version of such an assembly.

A2. So far unpublished results on the classification of

parallel-illumination transmission electron microscope images

from a subperiodic intrinsic membrane protein crystal are

mentioned in Appendix C briefly. The ongoing development

of an information-theoretic classification and quantification

method for projected crystallographic point symmetries from

transmission electron diffraction patterns in approximate zone

axis orientations is also mentioned in Appendix C.

That method has the potential to (i) distinguish genuine

quaternary symmetries of intrinsic membrane protein

complexes from pseudosymmetries at the point symmetry

level and (ii) solve the symmetry inclusion problem in a

recently demonstrated symmetry-contrast mode (Krajnak &

Etheridge, 2020) of 2D scanning transmission electron

microscopy on a 2D grid with fast pixelated direct electron

detectors (Ophus, 2019; commonly referred to as 4D-STEM).

A3. The obtaining of satisfactory Fourier filtering results

was facilitated by the above-mentioned increase in the

number of unit cells in the crystal pattern that underlies Fig. 1

by computational periodic motif stitching. This kind of

computational increase of a digital image of the original

graphic work of art is also highly beneficial to the subsequent

crystallographic symmetry classification and a possible follow-

up step of the enforcing of the plane symmetry that most likely

underlies the pattern in a statistically sound sense.

Note also that Fourier filtering (Park & Quate, 1987) is an

integral part of symmetry classifications and any subsequent

crystallographic processing of a digital image. This is because

the sums of squared residuals and the symmetrizing of the

input image data are based only on the structure-bearing

Fourier coefficients of a digital image (that are laid out on a

lattice in reciprocal space).

A4. The analogy between Wyckoff positions in the direct-

space unit cell of an ideal crystal pattern and so-called ‘domain

maps’ (Verberck, 2012) of the symmetries of the Fourier

coefficients of such a pattern may be helpful to appreciate this

statement. There is also an analogy between the asymmetric

unit in direct space and the ‘minimal domain’ in Fourier space.

Typically, there are many more general Wyckoff positions

with site symmetry 1 and their characteristic multiplicity than

special Wyckoff positions with higher site symmetries and

their reduced multiplicities. For unit cells that contain a large

number of points in direct space, the multiplicity of the general

Wyckoff position approximates the combined-weighted

multiplicities of all Wyckoff positions in an ideal crystal

pattern of high complexity reasonably well.

A5. This is because the dimension of the data space is in our

case one, i.e. intensity values of pixels. The co-dimension is the

difference between the dimension of the data space and the

dimension of the model space, d in (3) and (4). The dimension

of the model space is zero, in our case, as geometric points are

representations of the individual pixels.

A6. Relying on the *.hka files of CRISP without further

editing is not ideal, see also note A7, but was done in this study
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in order to enable a direct comparison of the symmetry clas-

sification results. The geometric models that are represented

by *.hka files with different numbers of data points, different

dynamic ranges and different spatial resolutions do not

necessarily always give the best possible symmetrized version

of the input image data in Fourier space. For the purpose of

the demonstrations in this paper and to allow for the

comparison of classification results that were obtained using

the information-theory-based methods with those of the

CRISP program, the accuracy of all geometric models is

deemed to be more than sufficient.

On all accounts, the geometric models that CRISP provides

in the form of exportable *.hka files are always quite repre-

sentative of symmetrized versions of analyzed images as

demonstrated by the successes of countless electron crystal-

lography studies despite necessarily different choices for the

dynamic range, spatial resolution and numbers of included

structure-bearing Fourier coefficients.

A7. Ideally, one would base all calculations on symmetrized

models of the input image data that feature exactly the same

appropriately indexed structure-bearing Fourier coefficients

and number of such coefficients. To obtain the same number of

data points (complex Fourier coefficients of the image inten-

sity) in all geometric models of the input image data, one

would need to treat Fourier coefficients that are absent in

certain geometric models as featuring zero amplitude and

arbitrary phase. The absences can either be systematic or

incidental. In both cases, the zero-amplitude Fourier coeffi-

cients are characteristics of the properly symmetrized

geometric models of the input image data.

One can then give confidence levels for the classification

into minimal supergroups over maximal subgroups by using

equations (12) to (15) of Appendix B and provide a complete

crystallographic symmetry measurement result. In the absence

of generalized noise (including small calculation errors), the

smallest possible entry in the second column of Table 2 should

for genuine symmetries then be restricted to unity.

A8. Spread noise ‘mimics’ to some extent the effects of

small random crystal-sample movements in a microscope

during the recording of a more or less 2D periodic image.

A9. The rather fat tails in the histogram in Fig. 6 are actually

artifacts of the way the Gimp program adds Gaussian-

distributed noise to the individual pixel intensity values. All

pixel intensities that would after the adding of the noise

amount to something below zero are set to zero (black) and

all pixel intensities that would be larger than 255 are set to

255 (white). This fat-tails effect can also be seen in the

histogram of the moderately noisy crystal pattern that

underlies Fig. 5.

The histogram in Fig. 6 may actually to a better approx-

imation be described by one of Mandelbrot’s stable distribu-

tions (Mandelbrot, 1963). Such a distribution may acquire

approximate Gaussian tails with the addition of more stably

distributed noise from a multitude of sources. This is in line

with Mandelbrot’s bon mot: ‘approximations are absurd in

some problems but are adequate in many others, and they are

so simple that one must consider them first’ (1963). The central

limit theorem applies to both stable distributions and Gaus-

sian distributions.

A10. Note that much of the noise removal is due to the

translation averaging by Fourier filtering over approximately

88 unit cells. In order to obtain a good image-quality

enhancement in an experimental study of a crystal, one needs

to start with an image with a large field of view and medium

magnification. That is somewhat unusual in the microscopical

practice where the focus is often on structural defects and

images are recorded with small fields of view and very high

magnifications.

As discussed in detail in Moeck (2019), the Fourier-space

approach to crystallographic symmetry classifications and the

subsequent optimal processing of a 2D crystal pattern offers

significant advantages over any direct-space approach. Wiener

filters can be used in direct space to increase the image quality,

but that does not restore the broken site symmetries in the

translation-averaged unit cell.

The precondition for using the Fourier-space approach is,

on the other hand, a direct-space image with a sufficient

number of more or less translation-periodic unit cells which

are represented by a large number of pixels. Depending on the

complexity of the unit cell, several tens of unit cells may suffice

for good image-processing results. The results of the proces-

sing of larger regions of more or less 2D periodic images are

always better than their counterparts for smaller regions

(Dempsey & Moeck, 2020). As for the shape of the processed

image regions, circular discs are preferable over any other

shapes. In the electron crystallography of intrinsic membrane

protein crystals, one typically averages over several hundred

to a few thousand unit cells in a TEM image and uses

magnifications of around 50 000 only. The averaging of the

periodic structure-bearing Fourier components with matching

Laue indices from multiple images of the same crystalline

sample and plane symmetry group p1 is analogous to merging

X-ray or neutron diffraction data from several crystals of

the same kind and common practice in electron crystal-

lography.

The stitching together of experimental direct-space images

that were recorded under different imaging conditions in

order to increase the number of unit cells in the composite

image is not recommended. Using a computer program such as

Microsoft ICE 2.0, this may lead to additional Fourier coeffi-

cients that represent the created superstructure. The stitching

together of the crystal pattern that underlies Fig. 1 did not lead

to additional Fourier coefficients because it was free of noise,

i.e. all unit cells were exactly identical due to the creation

process of the graphic piece of art, see note A1.

A11. Note that the ‘faint square crosses’ inside the ‘dark

curved diamonds’ with site symmetry 4 in Fig. 7 at the unit cell

coordinates 0, 0, 1, 0, 0, 1 and 1, 1 (as marked in Fig. 2)

originate partly from the tiling of digital photos of the same

painted ceramic square tile, see Fig. A-7 in the expanded

online version of this paper (Moeck, 2021a). There are

corresponding ‘narrow cross’ features at these positions in the

expanded digital version of Eva Knoll’s piece of graphic art

that served as basis of all demonstrations in this paper and
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which is available in the *.jpg and *.tif formats in the

supporting information for this paper.

The very low contrast ‘fourfold feature’ inside the dark

curved diamond at the fractional unit cell coordinates 1
2,

1
2

originates mainly from the ‘symmetrization of remains of the

added noise’ by the crystallographic image processing.

Analogously, note that the bright bow ties (at fractional unit

cell coordinates 1
2, 0, 1

2, 1, 0, 1
2 and 1, 1

2, as marked in Fig. 2)

are not homogeneously bright (as they appear to be in Figs. 1

and 8). They feature instead a ‘fine structure’ with the inten-

sity distribution of a twofold rotation point that originates

partly from the symmetrization of local Fourier ripples. A

more thorough discussion of these artifacts is provided in

Moeck (2021a).

All of these artifacts could have been suppressed by larger

spatial and dynamic range restrictions of the noisy structure-

bearing Fourier coefficients in Fourier space, resulting

unavoidably in lower contrasts in the direct-space pattern

after back transforming. This has in principle been demon-

strated with the processing of the nosiest crystal pattern of the

series, see Fig. 8.

A12. In every single-crystal X-ray or neutron diffraction

based determination of an unknown crystal structure, one

needs to assign a space group in which the subjectively most

reasonable model for the structure is to be refined. Informa-

tion theory, as defined in footnote 2, is partly about the

selection of the model for experimental data that is statisti-

cally/objectively most justified by the data themselves. Since

the experimental data are in diffraction-based crystallography

of a geometric nature, a geometric form of information theory

such as the one by Kenichi Kanatani is applicable.

When the symmetry classification (and quantification)

methods of this paper have been generalized to three spatial

dimensions, Walter C. Hamilton’s well known significance

tests of crystallographic R values after refinements into non-

disjoint space groups (Hamilton, 1965) could be considered

superseded. This is because they have been set up as null-

hypothesis tests. Information theory is widely considered to

offer a superior alternative to null-hypothesis testing, see

Anderson (2008) for a gentle introduction on how to bring

more objectivity to scientific studies.

APPENDIX B
Ad hoc defined confidence levels for classifications
into minimal supergroups for a special case of the
inequality on which the author’s information-theory-
based methods are based

For the special case Nm = Nl, inequality (9b) reduces to

J
_

m

J
_

l

< 1þ
2ðkm � klÞ

kmðkl � 1Þ
;

which has been labeled as inequality (9a) in the main part of

this paper.

When Nm = Nl, one can take advantage of the inequality

having the simple form of a numerical value on its right-hand

side that is just the sum of unity and a constant term that only

depends on the difference in the hierarchy levels, k, of the

respective two symmetrized non-disjoint models that are to be

compared with each other, see Figs. 4(a) and 4(b). The

respective ratios of sums of squared complex Fourier coeffi-

cient residuals and sums of squared Fourier coefficient

amplitude residuals are provided in these figures as insets for

easy reference. (The comparison of two non-disjoint symme-

trized models with respect of their ability to represent the

input image data is based on having an appropriate ‘relative

measure’ of their numerical distance to the common transla-

tion-averaged-only model in the first place.)

Inequality (9a) can be used in connection with ad hoc

defined confidence levels for geometric model selections.

Providing such confidence levels can be understood as giving a

quantitative measure of the corresponding model-selection

uncertainty, which needs to accompany any crystallographic

symmetry measurement results in order to be complete

(Helliwell, 2021).

Based on Kanatani’s information content ratio equation

(Kanatani, 1998), ad hoc defined confidence levels for model

selections in favor of a non-disjoint more symmetric/restricted

geometric model can for the special case Nm = Nl be

straightforwardly defined [whenever inequality (9a) is

fulfilled]. For two non-disjoint geometric models one obtains

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1=klÞ

1þ ð1=klÞ

ĴJm

ĴJl

þ
2=km

1� ð1=klÞ

 !vuut � 1 ð12Þ

and the critical value for K is obtained by inserting the

condition

J
_

m

J
_

l

¼ 1 ð13Þ

into (12) so that

Kcritical ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km � ðkm=klÞ þ 2

km þ ðkm=klÞ

s
< 1 ð14Þ

results.

Obviously, K 	 Kcritical is valid as the ratio of the two sums

of squared residuals ranges from unity (13) to a constant value

that is larger than unity and depends on the particular

combination of km and kl in inequality (9a).

When the ratio of the squared residuals is unity [as in (13)],

one has 100% confidence in choosing the more symmetric

model over the less symmetric model. Both models fit the

input image data equally well in that special case, which will in

practice only be obtained for noise-free mathematical ideali-

zations of real-world images, perfect geometric models and

with a perfectly accurate algorithm. When inequality (9a) is

not fulfilled, one has zero confidence in the selection of the

more symmetric model over its less symmetric counterpart.

This is all formalized by the definition of the confidence level

in identifying a minimal supergroup over its maximal

subgroup,
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Cm ¼
1� K

1� Kcritical

ð100%Þ; ð15Þ

which takes on values between 100% and zero as a function of

the ratio of the sums of squared residuals. [Negative values,

which are meaningless, result from (15) when inequality (9a) is

not fulfilled so that K > 1.] It makes sense to define an average

confidence level for a transition from all maximal subgroups to

their common minimal supergroup. For small symmetry

breakings of each individual maximal subgroup or class and

low-noise data, this average confidence level can be rather

high.

APPENDIX C
Outlooks on ongoing developments of the information-
theoretic crystallographic symmetry classification and
quantification methodology, and their potential
applications

Formulations of geometric information criteria are possible

where the generalized noise does not need to be approxi-

mately Gaussian distributed. For a non-Gaussian noise model,

the appropriate logarithmic likelihood estimate needs to be

used instead of a sum of squared residuals. The generalized

inverse of the Fisher information matrix needs then to replace

the isotropic covariance matrix of Gaussian-distributed noise.

In Kenichi Kanatani’s own words: ‘such an extension does not

seem to have much practical significance because of the diffi-

culty of estimating the parameters of a non-Gaussian noise

distribution’ (1998). Note that the generalized noise arises

from multiple sources with different characteristics, but the

overall distribution is not supposed to be dominated by any

one of these sources.

The assumption had to be made in the main part of this

paper that there is indeed more than translation symmetry in a

more or less 2D periodic pattern that is to be classified with

respect to its crystallographic symmetries. This may, however,

not always be the case.

There are certainly approximately 2D periodic patterns

with and without noise in which all point/site symmetries

higher than the identity operation are only pseudosymmetries

and not genuine. These patterns are revealed by large sums of

squared complex Fourier coefficient residuals for all plane

symmetry groups with kl = 2 and 3 and large sums of squared

Fourier coefficient amplitude residuals for all projected Laue

classes with kl = 4 and 6. (Note that the definition of crystal

pattern at https://dictionary.iucr.org/Crystal_pattern leaves it

open if there are site/point symmetries higher than the identity

operation or a single glide line in the unit cell of the pattern or

not.)

Those crystal patterns or images of crystals would be

misclassified by the author’s methods at the present stage of

their development if the facts were ignored that the sums of

squared residuals for all of these groups and classes are rather

large. The first of the notes added in proof in Section 6.1 above

identifies a practical workaround to this problem. The second

of these notes mentions a consistency check that can be

generalized to the Nm 6¼Nl case, administered a posteriori, and

does not require kl being an integer larger than unity.

C1. Quaternary symmetry and pseudosymmetry of intrinsic
membrane protein complexes

Crystallographic studies of the quaternary structure of

intrinsic membrane protein complexes in lipid bilayers are in

the structural biology field based on parallel-illumination

transmission electron microscope (TEM) images that are

dominated by Poisson-distributed shot noise. As mentioned at

the beginning of this Appendix, an information-theoretic

approach to the classification and quantification of crystal-

lographic symmetries in such highly beam sensitive crystalline

samples (and the digital images that were recorded from

them) could be specifically developed by a generalization of

Kanatani’s geometric framework.

For the time being, this author sees no harm in using the

methods of this paper in that particular field as well. This is for

two reasons: (i) because shot noise becomes with moderate

electron doses approximately Gaussian distributed and (ii) the

subjective (and less accurate) traditional crystallographic

symmetry classification methods (that do not model the noise

at all) are currently used for exactly this purpose.

So far unpublished results of this author on the plane

symmetry group and Laue class classification of the cyclic

nucleotide-modulated potassium channel MloK1 from

bacterium Mesorhizobium loti in both the open and closed

conformations indicate that the projected genuine, i.e. least

broken, quaternary symmetry of this protein complex is point

group 2. There is, however, a strong fourfold pseudosymmetry

along the channel axis as indicated by a relatively low sum of

squared residuals of the complex Fourier coefficients for plane

symmetry group p4gm.

This makes the potassium channel a dimer of two dimers,

while other authors (Chiu et al., 2007; Kowal et al., 2014, 2018)

claimed it to be a tetramer. Their claim relies, however, on the

traditional crystallographic symmetry classification metho-

dology, which contains elements of subjectivity.

Incidentally, the experimental facts of this author’s study on

the above mentioned MloK1 potassium channel are similar to

the results of the information-theoretic analysis of the noisiest

crystal pattern in the main part of this paper. The histograms

of the experimental TEM images revealed a single broad peak

with slim tails and a mean value that corresponded to

approximately 50% of the whole dynamic intensity range. This

peak looked visually like some Gaussian function to a much

better approximation than the histogram inset in Fig. 6. In

other words, there was apparently enough shot noise in the

experimental images and contributions from other noise

sources so that the generalized noise became approximately

Gaussian distributed.

According to other authors (Chiu et al., 2007; Kowal et al.,

2014, 2018), the plane projected symmetry of MloK1 potas-

sium channel crystals from this bacterium is plane symmetry

group p4gm. This author’s analysis indicates, on the other

hand, that this can only be a strong pseudosymmetry because
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projected Laue class 2mm has been identified as the K-L best

representation of the symmetry information in the amplitude

maps of the discrete Fourier transforms of the TEM images.

Note that this analysis was based on some of the same

experimental images that Kowal et al. (2014) used in their

study, as downloaded from the EMDataResource (2021).

Those experimental images were recorded by these other

authors with a large underfocus at a nominal zero-tilt setting

of the specimen goniometer. A tomographic images and

derived electron density maps supported model mechanism

for the opening and closing of this particular potassium

channel that is restricted to fourfold rotation symmetry, such

as the one proposed by Kowal et al. (2014) has, accordingly (at

the present time) less ‘geometric support’ than an alternative

mechanism that is restricted to twofold rotation symmetry

only.

Note that the identification of projected Laue class 2mm as

the point symmetry of the K-L best model of the experimental

data rules out the existence of genuine fourfold rotation points

as site symmetries in the unit cell of the MloK1 potassium

channel crystal in an analogous manner, as the entries for

projected Laue class 4 in Tables 7 and 9 rule out plane

symmetry group p4gm for the very noisy crystal pattern that

underlies Fig. 6. It is notable that it was again the information-

theoretic projected Laue class determination that led to the

identification of a strong Fedorov-type pseudosymmetry at the

site/point symmetry level. Presumably, projected Laue class

determinations by the new method are less sensitive to noise

than the corresponding plane symmetry group determinations.

(Amplitude maps of discrete Fourier transforms of perfect

crystal patterns are known to be translation invariant.)

Complementing information-theoretic classification studies

of transmission electron diffraction spot patterns from

intrinsic membrane protein complexes under zero-crystal-tilt

conditions would be helpful as these patterns typically feature

more spots than the number of structure-bearing Fourier

coefficients of the corresponding TEM images and the spot

intensities are not affected by aberrations of the objective lens.

This means they contain more point/site symmetry specific

information. Electron diffraction patterns from perfect plane-

parallel crystals are translation invariant in an ideal TEM so

that small random sample movements under the electron

beam might be tolerable when projected point symmetry

classifications are made on the basis of such patterns.

C2. Development of an information-theoretic projected
point symmetry classification and quantifications method

A first motivation for the development of an information-

theoretic projected point symmetry classification and quanti-

fications method was provided in the last paragraph of

Appendix C1. There are, in addition, very interesting devel-

opments in 4D-STEM (Ophus, 2019) with fast pixelated direct

electron detectors. A new symmetry-contrast imaging mode

has, for example, been recently demonstrated by Krajnak &

Etheridge (2020).

Future developments of that contrast mechanism into a

widely accepted standard are, however, hampered by the well

known symmetry inclusion relationships. The incorporation of

a newly developed information-theoretic projected point

symmetry group classification and quantification method on

the basis of experimental electron diffraction patterns would

solve this problem. As N is not likely to be large in electron

diffraction patterns of crystals with small unit cells and

structural defects, suitable replacements for equation (6) have

to be used.

This author has taken up the challenge to develop

such a method for selected-area electron diffraction spot

patterns, precession electron diffraction patterns, nearly-

parallel-illumination nanodiffraction disc patterns, and

convergent beam microdiffraction patterns with essentially

non-overlapping and featureless (blank) electron diffraction

discs.
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