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Chain, ribbon and tube silicates are based on one-dimensional polymerizations

of (TO4)n� tetrahedra, where T = Si4+ plus P5+, V5+, As5+, Al3+, Fe3+ and B3+.

Such polymerizations may be represented by infinite graphs (designated chain

graphs) in which vertices represent tetrahedra and edges represent linkages

between tetrahedra. The valence-sum rule of bond-valence theory limits the

maximum degree of any vertex to 4 and the number of edges linking two vertices

to 1 (corner-sharing tetrahedra). The unit cell (or repeat unit) of the chain graph

generates the chain graph through action of translational symmetry operators.

The (infinite) chain graph is converted into a finite graph by wrapping edges that

exit the unit cell such that they link to vertices within the unit cell that are

translationally equivalent to the vertices to which they link in the chain graph,

and the wrapped graph preserves all topological information of the chain graph.

A symbolic algebra is developed that represents the degree of each vertex in the

wrapped graph. The wrapped graph is represented by its adjacency matrix which

is modified to indicate the direction of wrapped edges, up (+c) or down (�c)

along the direction of polymerization. The symbolic algebra is used to generate

all possible vertex connectivities for graphs with �8 vertices. This method of

representing chain graphs by finite matrices may now be inverted to generate all

non-isomorphic chain graphs with �8 vertices for all possible vertex

connectivities. MatLabR2019b code is provided for computationally intensive

steps of this method and �3000 finite graphs (and associated adjacency

matrices) and �1500 chain graphs are generated.

1. Introduction

Silicon and oxygen are the most abundant elements in the

crust and mantle of the Earth and silicates sensu lato are the

most important constituents of many crust and mantle

processes. As part of a larger programme to provide a

framework for understanding the atomic scale factors

controlling composition, structural variability and paragenesis

(occurrence) of silicate minerals in the rocks of the Earth’s

crust and mantle, Day & Hawthorne (2020) presented a

structure hierarchy (Hawthorne, 2014) for chain-silicate

minerals in which the silicate moiety consists of (TO4)n�

groups that are polymerized infinitely in one dimension to

form chains, ribbons and tubes. For simplicity of expression,

we denote ‘chains, ribbons and tubes’ as ‘chains’ except where

it is necessary to distinguish between these three types of

polymerization. Where we refer to a silicate chain, ribbon and/

or tube, or other silicate unit (i.e. cluster, sheet and/or

framework), let it be understood that the unit must contain

Si4+ but may also contain other tetrahedrally coordinated

cations: e.g. T = P5+, V5+, As5+, Si4+, Al3+, Fe3+ and B3+. For

simplicity of expression, we refer to such compositions as
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silicates, whether or not the dominant tetrahedrally coordi-

nated cation is Si4+ as we require them to contain Si4+ as an

essential constituent.

We wish to understand the characteristics of graphs that

give rise to different classes of mineral structures: (i) common

minerals of high abundance; (ii) common minerals of low

abundance; (iii) rare minerals of high abundance; (iv) rare

minerals of low abundance; (v) no mineral structures at all. To

do this we need to derive all possible one-dimensionally infi-

nite graphs (up to some size limit) and examine what graph

characteristics (a) prevent, and (b) allow, their embedding into

Euclidean space with edge lengths and inter-edge angles

compatible with crystal structures of specific types of general

chemical composition. Our intent is not to predict crystal

structures but to examine the factors that allow embedding of

graphs into Euclidean space such that their geometrical

characteristics are compatible with metrics of crystal struc-

tures. Here, we characterize all one-dimensional polymeriza-

tions of tetrahedra with periodic symmetry; in a later paper,

we will address the issue of embedding these graphs into

Euclidean space.

2. Terminology

Following Day & Hawthorne (2020), we define chains, ribbons

and tubes as follows:

Chain: a structural unit of (TO4)n� tetrahedra that link

together infinitely in a single direction, and that can be broken

into two parts by eliminating a single linkage between adjacent

tetrahedra.

Ribbon: a structural unit of (TO4)n� tetrahedra that link

together infinitely in a single direction, and that cannot be

broken into two parts by eliminating a single linkage between

adjacent tetrahedra.

Tube: a structural unit of (TO4)n� tetrahedra that link

together infinitely in a single direction, and also link ortho-

gonally to the direction of polymerization to form a hollow

cylinder.

It can be difficult to differentiate some ribbon arrangements

from tube arrangements when shown as graphs in two

dimensions (i.e. illustrated on the printed page or a screen).

Two-dimensional graphs of tubes are always non-planar: they

always have apparently intersecting or overlapping edges.

Two-dimensional graphs of ribbons and chains are planar and

can always be drawn without any intersecting or overlapping

edges. Although some graphs of ribbons and chains may show

crossed edges, this feature may be removed by changing the

view direction of the ribbon or chain and/or moving the

vertices of the graph in the plane of the illustration while

maintaining the connectivity of the graph; this is not possible

for graphs of tubes.

Cluster: a zero-dimensional structural unit of linked

(TO4)n� tetrahedra that do not extend infinitely in any

direction. The graph of a cluster may be planar or non-planar.

Structural unit: the strongly bonded part of a structure,

consisting of oxyanions and low-coordination-number cations

(Hawthorne, 1983, 2015b).

Repeat unit: that part of a (i) chain, ribbon or tube that can

be repeated by translational symmetry to produce the

complete chain, ribbon or tube; (ii) finite graph that can be

repeated by topological translational symmetry to produce the

graph of the complete chain, ribbon or tube.

3. Previous work

Since the pioneering work of Wells (e.g. 1954, 1962, 1977),

there has been much work on the description and generation

of simple crystal structures using periodic nets. For example,

Klee (1980) examined tetrahedron polymerizations in silicates

and their corresponding periodic nets, and Klein (1996)

generated 2-periodic nets and their corresponding sheets of

tetrahedra. The quasi-infinite character of crystal structures

presented a problem in their representation as finite graphs.

However, this problem was overcome with the use of (finite)

quotient graphs (Chung et al., 1984; Eon, 1998, 1999, 2016;

Klee, 2004). This work involved the description of known

crystal structures using nets and the generation of new

nets or graphs as potential arrangements of atoms in

crystals, and extensive databases of structures and nets are

available (e.g. Delgado-Friedrichs & O’Keeffe, 2003; Blatov et

al., 2014). Chung et al. (1984) used quotient graphs to describe

and generate nets and this type of approach has been inte-

grated in various software programs including SYSTRE

(Delgado-Friedrichs & O’Keeffe, 2003) and ToposPro (Blatov

et al., 2014).

Work on silicates has tended to focus on framework and

sheet structures (Smith, 1977, 1978, 1988; Liebau, 1985;

Hawthorne, 2015a; Hawthorne & Smith, 1986a,b, 1988;

Hawthorne et al., 2019; Krivovichev, 2008, 2009), and there is

no comprehensive description of silicate chains, ribbons and

tubes using graphs with one-dimensional periodic symmetry,

except for some tubular chain silicates (Rozhdestvenskaya &

Krivovichev, 2011). Previous methods involving quotient

graphs have focused on describing and predicting crystal

structures, and hence have dealt with graphs that (i) are

already embedded in Euclidean space, and (ii) are connected.

As (i) we wish to examine the details of embedding graphs

into Euclidean space such that their metric properties are

compatible with crystal structures, and (ii) do not wish to be

restricted to connected graphs as some crystal structures

consist of silicate polymerizations that are not connected to
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Figure 1
(a) A labelled graph with vertices indicated by red circles and edges
indicated by black lines, (b) the vertex and edge set of the graph. Vertices
1 and 3 are of degree 3 (3-connected) and vertices 2 and 4 are of degree 2
(2-connected).



each other, we use a different approach to enumerating

graphs.

4. Graphs

In this work we take a graph-theory approach and will begin

by defining our terms as there are some differences in some of

these definitions in the literature.

We may define a graph as a nonempty set of elements, V(G),

called vertices, and a nonempty set of unordered pairs of these

vertices, E(G), called edges (Wilson, 1979). We may colour the

vertices and we may label the vertices. The result is a labelled

polychromatic graph, illustrated pictorially in Fig. 1(a) and

expressed in terms of its vertex set and edge set in Fig. 1(b).

The degree of a vertex is the number of edges incident at that

vertex; thus in Fig. 1(a), vertices 1 and 3 are of degree 3 and

vertices 2 and 4 are of degree 2. Here we will use graphs to

represent tetrahedra and linkages between tetrahedra: the

vertex set represents tetrahedra and the edge set represents

linkages between tetrahedra. As tetrahedra in silicates link

only by sharing corners, vertices in the graphs we use to

represent infinite linkages of tetrahedra are linked only by one

or zero edges. Simple bond-valence arguments limit the

maximum number of silicate tetrahedra to which a single

tetrahedron may link to 4, i.e. the coordination of bridging

O2� ions by tetrahedrally coordinated cations cannot exceed 2

without violating the valence-sum rule (Brown, 2016). Thus,

the maximum degree of a vertex in the graphs we will consider

is 4. For convenience, we denote translationally symmetric

infinite graphs with vertex degrees 1–4 as chain graphs.

4.1. How to represent infinite chains as finite graphs

As we are dealing with tetrahedron linkages that are

(virtually) infinite in one direction, all the graphs that we

consider are similarly infinite in one direction. Although

infinite, these chain graphs have translational symmetry in the

direction of tetrahedron polymerization, and hence we

represent the chain graph by a repeat unit that is propagated

by the translational symmetry of the chain (see Section 5

below). To do this, we must incorporate the translational

symmetry into the finite graph of the repeat unit. We may do

this by wrapping the edges that exit the repeat unit in either

repeat direction (+c and �c) such that they join to vertices

within the same repeat unit while maintaining the connectivity

of the original chain graph (Fig. 2).

To preserve the information related to the translational

symmetry of the chain graph, the wrapped edge in the

wrapped finite graph must be indicated; here, a wrapped edge

is always shown as a curved line and an edge that is not

wrapped (does not exit the repeat unit) is shown as a straight

line. There are two different possibilities: (i) in which adjacent

repeat units link via edges between identical vertices; and (ii)

in which adjacent repeat units link via edges between non-

identical vertices. Consider case (i): the graph in Fig. 2(a)

consists of a repeat unit containing vertex 1 of degree 1 and

vertex 2 of degree 3, and vertex 2 links to translationally

equivalent vertices in adjacent repeat units. We may wrap the

edges that link to vertices of an adjacent repeat unit along the

repeat direction such that they join and form a loop, main-

taining the vertex degree 3 for vertex 2 [Fig. 2(b)]. A tetra-

hedron cannot link to itself and hence the loop must indicate
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Figure 2
(a) An infinite chain graph with vertices of degree 1 and 3, in which repeat
units are separated by dashed lines and edge 2–2 extends outside the
repeat unit; (b) a finite wrapped graph in which edges that extend outside
the repeat unit in (a) are wrapped to form a loop at vertex 2; (c) an
infinite chain graph with vertices of degree 1, 2 and 3; (d) a finite wrapped
graph in which edges that extend outside the repeat unit in (c) are
wrapped to form a curved edge between vertices 1 and 2. Straight black
arrows indicate the infinite extension of chain graphs in the +c and �c
directions. Curved black arrows in (a) and (c) indicate how edges are
wrapped in (b) and (d), and curved black lines represent wrapped edges
in (b) and (d). Dashed black lines show the repeat units of each chain
graph.

Figure 3
Two topologically distinct (non-isomorphic) chain graphs: (a) a chain
graph of four-membered rings (squares), and (b) a chain graph of six-
membered rings (hexagons) in which edges that extend outside the repeat
unit in the +c and �c directions are shown with green and red arrows,
respectively. (c), (d) The wrapped graphical representations of (a) and (b)
are topologically identical (isomorphic) and differentiated by indicating
the direction of wrapped (curved) edges with red and green arrows.
Straight black arrows in (a) and (b) indicate the infinite extension of chain
graphs in the +c and �c directions. Curved black arrows indicate how
edges are wrapped in (a) and (b), and curved black lines represent
wrapped edges in (c) and (d). Dashed black lines show the repeat units of
each chain graph.



that the vertex corresponding to the tetrahedron links to

translationally equivalent vertices (tetrahedra) in both the +c

and �c directions. Consider case (ii): the graph in Fig. 2(c)

consists of a repeat unit containing vertex 3 of degree 1, vertex

1 of degree 2 and vertex 2 of degree 3. Vertex 2 links to

vertex 1 of the adjacent repeat unit in the +c direction and

vertex 1 links to vertex 2 of the adjacent repeat unit in the �c

direction, and hence wrapping produces an additional edge

[shown as a curved line in Fig. 2(d)] between vertices 1 and 2

in the repeat unit.

4.2. The direction of wrapped edges

In most cases, all information related to the translational

symmetry of a given chain graph can be represented using a

finite graph by wrapping and denoting wrapped edges as

curved lines; however, this is not always the case. Consider the

infinite chain graphs shown in Figs. 3(a) and 3(b); they are

topologically different from each other (non-isomorphic) as

one contains squares [Fig. 3(a)] and the other contains hexa-

gons [Fig. 3(b)]. However, wrapping each of these infinite

graphs produces topologically identical (isomorphic) finite

wrapped graphs [Figs. 3(c), 3(d)], in which there is one

wrapped edge between vertices 1 and 2, and one wrapped

edge between vertices 1 and 3. This example suggests that to

completely describe a specific chain graph via wrapping, we

need to specify (i) which edges are wrapped (curved lines),

and (ii) the direction in which those edges exit the repeat unit.

In Fig. 3(a), edges extend from vertex 1 out of the repeat unit

to vertex 2 in the +c direction, and from vertex 1 out of the

repeat unit to vertex 3 in the +c direction. This is shown in the

corresponding wrapped graph [Fig. 3(c)] by adding a green

arrow to each wrapped edge to indicate linkage in the +c

direction. In Fig. 3(a), edges extend from vertices 2 and 3 out

of the repeat unit to vertex 1 in the�c direction. This is shown

in the corresponding wrapped graph [Fig. 3(c)] by adding a red

arrow to each wrapped edge to indicate linkage in the �c

direction. In Fig. 3(b), an edge extends from vertex 1 to vertex

2 in the �c direction and from vertex 2 to vertex 1 in the +c

direction, and these directions are shown by red and green

arrows, respectively, in the corresponding wrapped graph [Fig.

3(d)]. It is apparent that the difference in the direction of

wrapped edges linking vertices 1 and 2 is why the infinite

graphs in Figs. 3(a) and 3(b) are topologically different. The

direction of any wrapped edge must be indicated to ensure

that all information contained within the chain graph is

represented in the finite wrapped graph.

5. Geometrical and topological (graphical)
representations of chains

Chain-, ribbon- and tube-silicate structures may be shown in

three representations:

(i) Tetrahedron: (TO4)n� groups are shown as tetrahedra

and the original chain geometry is preserved [Fig. 4(a)].

(ii) Ball-and-stick: representations in which tetrahedra are

represented by points and links between tetrahedra are

represented by lines, and the original chain geometry is

preserved [Fig. 4(b)].

(iii) Graphs: representations in which the chain is reduced

to a graph in which tetrahedra are represented by vertices and

linkages between tetrahedra are represented by edges, and the

original chain geometry is not preserved [Fig. 4(c)].

The geometry of a given chain, ribbon and/or tube may be

represented by identifying a single geometrical repeat unit

[with ng tetrahedra, Fig. 4(a)] as in representations (i) and (ii),

and the topology of a given chain, ribbon and/or tube may be

represented by identifying a single topological repeat unit

[with nt vertices, Fig. 4(c)] as in representation (iii). The

topological and geometrical repeat units can be linked infi-

nitely by translation in a single direction to produce the

original infinite polyhedron, ball-and-stick and graphical

representations, respectively.

5.1. The geometrical repeat unit

In the tetrahedron and ball-and-stick representations, we

assign a geometrical repeat unit in which the geometry of the

chain (lengths and angles of linkages between tetrahedra as

observed in the mineral or synthetic compound) is preserved.

The geometrical repeat unit contains the minimum number of

tetrahedra (ng) required to generate the chain through

translation operations. It is necessary to specify the numbers

of 1-, 2-, 3- and 4-connected tetrahedra that comprise ng to

describe the geometrical repeat unit of a chain. To do this, we

denote a tetrahedron by T, its connectivity by the superscript c

(c = 1–4) and the number of such tetrahedra in the geometrical

repeat unit by the subscript r. The expression cTr = 1Tr
2Tr

3Tr
4Tr represents all possible connectivities of tetrahedra in

the repeat unit of a chain, and the number of terms with r 6¼ 0

in the cTr expression is defined as its rank. The majority of

chains observed in minerals and synthetic compounds contain

only 2- and 3-connected vertices (i.e. cTr has a rank of 2 as r = 0

for 1Tr and 4Tr), but some chains also contain 1- and/or 4-

connected vertices. As an example, consider the tetrahedron
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Figure 4
(a) Tetrahedron, (b) ball-and-stick and (c) graphical representations of
the chain in astrophyllite-supergroup minerals viewed orthogonally to the
c axis. Each tetrahedron in (a) is represented by a point (ball) in (b) and a
vertex in (c), and all linkages between tetrahedra in (a) are represented
by lines (sticks) in (b) and edges in (c) that connect each ball or vertex.
Red and blue balls (points) represent 3- and 1-connected vertices,
respectively. Dashed black lines show the 1T2

3T2 geometrical repeat unit
(ng) in (a) and (b), and the 1V1

3V1 topological repeat unit (nt) in (c).



[Fig. 4(a)] and ball-and-stick [Fig. 4(b)] representations of the

[Si4O12]8� chain in the astrophyllite-supergroup minerals

(Sokolova et al., 2017). The ball-and-stick representation

shows two types of vertices: (i) 3-connected (red circles), and

(ii) 1-connected (blue circles) [Fig. 4(b)]. The geometrical

repeat unit contains two of each of these types of ball (ng = 4),

and the cTr expression for the astrophyllite-type chain is

written as cTr = 1T2
2T0

3T2
4T0 = 1T2

3T2 (rank = 2) (Day &

Hawthorne, 2020).

5.2. The topological repeat unit

Graphical representations of chains, ribbons and tubes have

a topological repeat unit in which only the topological prop-

erties are represented. The topological repeat unit contains

the minimum number of vertices (nt) required to generate the

chain through infinite linkage in a single direction by trans-

lation. By analogy with the geometrical repeat unit, we may

describe the topological repeat unit using the expression cVr =
1Vr

2Vr
3Vr

4Vr where cVr denotes the connectivity of vertices

(V) rather than tetrahedra (T). In many chains, tetrahedra are

topologically identical but geometrically distinct. This often

results in chains with geometrical and topological repeat units

that contain different numbers of tetrahedra and vertices. Figs.

4(a), 4(b) show the tetrahedron and ball-and-stick repre-

sentations of the chain in the astrophyllite-supergroup

minerals, where cTr = 1T2
3T2 is the connectivity of the tetra-

hedra in the geometrical repeat unit. The graphical repre-

sentation of the same chain [Fig. 4(c)] has a topological repeat

unit that contains only two vertices, as the different directions

of branching of the 1-connected vertices in Fig. 4(b) do not

affect the topology of the linkage. It follows that we may

describe the topological repeat unit in the astrophyllite-

supergroup minerals as cVr = 1V1
3V1. Hence the vertex

connectivity, cVr, for a topological repeat unit may be derived

by multiplying the values of r in the respective cTr expression

by nt/ng. Note that any graph with an odd number of vertices

of odd degree is not possible. For example, the graph with

vertex connectivity 1V1
2V1 has an odd number of vertices of

degree 1. If a vertex of degree 1 is connected to a chain with

vertex connectivity 2V1, a vertex of degree 3 is created and the

chain no longer has the vertex connectivity 1V1
2V1 (Fig. 5);

hence this chain is not possible. Instead, a chain with vertex

connectivity 1V1
3V1 is created (Fig. 5) which has an odd

number (one) of vertices of degree 1 and 3 but the total

number of vertices with an odd degree (two) is even and

therefore a chain graph with vertex connectivity 1V1
3V1 is

possible and is shown in Fig. 5.

6. Adjacency matrices

A finite graph [Fig. 6(a)] may be represented numerically as a

matrix [Fig. 6(b)]. The vertices are listed as shown in Fig. 6(b):

each column and row of the matrix is associated with a specific

vertex, and the corresponding matrix entries denote whether

(positive) or not (zero) two vertices are adjacent, that is joined

by an edge. The matrix elements denote the edge set, and this
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Figure 6
(a) A finite graph with vertex connectivity 2V2

3V2
4V1 and (b) the

corresponding adjacency matrix in which each row (or column)
represents a vertex and the sums of rows and columns equal the degree
of the respective vertices. Cells of the upper and lower triangle are
outlined in red and separated by diagonal cells.

Figure 5
A chain graph with vertex connectivity 2V1 (red vertices and black edges)
to which 1V1 vertices (green vertices and edges) have been added,
forming a chain graph with vertex connectivity 1V1

3V1. The red circle
indicates a vertex that has been changed from degree 2 to 3 by the
connection with a 1-connected vertex. Dashed black lines show the repeat
unit of the chain graph.

Figure 7
(a) A chain graph with vertex connectivity 1V1

3V1, (b) the corresponding
wrapped graph and (c) the corresponding adjacency matrix. (d) A chain
graph with vertex connectivity 1V1

2V1
3V1, (e) the corresponding wrapped

graph and (f) the corresponding adjacency matrix. Curved black arrows
indicate how edges are wrapped in (a) and (d), and curved black lines
represent wrapped edges in (b) and (e). Coloured arrows in (b) are not
required as the loop on vertex 2 represents linkage to equivalent vertices
(20 and 20 0) in the +c and �c directions. Green and red arrows in (e) and
matrix-element superscripts in (f) indicate the number and direction of
wrapped edges. Dashed black lines show the repeat units of each chain
graph.



matrix is called an adjacency matrix. Conventionally, the

diagonal entries of the matrix are zeros, and the edge set of the

graph is denoted by the upper (or lower) triangle of matrix

entries. The degree of a vertex is the number of edges

connected to that vertex, and the sums of the entries in each

row and column of the matrix correspond to the degrees of the

vertices associated with that row or column. All adjacency

matrices for graphs with no directed edges must be symme-

trical about the diagonal [Fig. 6(b)]. As discussed above, the

maximum degree of a vertex is 4 (e.g. vertex 2, Fig. 6).

Wrapped graphs may contain two vertices linked by two edges

where one or both of such edges is wrapped (curved).

How do we represent information on wrapping in the

adjacency matrix? In the graph in Fig. 7(a), vertex 2 links to

vertex 20 in the +c direction and to vertex 200 in the �c

direction, and in the corresponding wrapped graph [Fig. 7(b)]

there are two edges incident at vertex 2 which form a loop. We

may represent this loop by coding the diagonal entry 2,2 in the

adjacency matrix [Fig. 7(c)] as 2, and the degree of vertex 2 is 3

in the chain graph [Fig. 7(a)], the wrapped graph [Fig. 7(b)]

and the corresponding adjacency matrix [Fig. 7(c)]. The

direction of the looped edge in Fig. 7(c) need not be indicated

by a green or red arrow as any looped edge exits the repeat

unit in both the +c and �c directions. In Fig. 7(d), there are

two linkages between vertices 1 and 2, one of which occurs

within the repeat unit [the straight edge in Fig. 7(e)] and one of

which links to vertices of adjacent repeat units in both +c and

�c directions [the curved edge in Fig. 7(e)]. To represent the

directions of linkage to adjacent repeat units, the relevant

matrix entries are given superscripts which indicate the

number and direction of the linkages to adjacent repeat units.

Thus entry 1,2 in the adjacency matrix is coded as 21� [Fig.

7(f)] as one of the two 1–2 edges extends from vertex 1 out of

the repeat unit to vertex 2 in the�c direction, and the other 1–

2 edge occurs within the repeat unit of the infinite chain graph

and hence has no superscript. Similarly, entry 2,1 is coded as

21+ [Fig. 7(f)] as one of the two 2–1 edges extends from vertex

2 out of the repeat unit to vertex 1 in the +c direction.

A more complicated chain graph with vertex connectivity
2V1

3V4 is shown in Fig. 8(a) and the corresponding wrapped

graph and its adjacency matrix are shown in Figs. 8(b) and

8(c), respectively. Entries 1,2 and 2,1 are coded as 1+ and 1� to

indicate the numbers and directions of the external linkages

[Fig. 8(c)]. Vertex 2 links to vertex 3 in both the +c and �c

directions, and similarly vertex 3 links to vertex 2 in both the

+c and�c directions [Fig. 8(a)]. Thus entries 2,3 and 3,2 do not

need to indicate directions as the superscript 22 shows that

there are two wrapped edges, and these must occur in opposite

directions. Vertex 1 links to equivalent vertices in adjacent

repeat units and the entry 1,1 is coded 2 [Fig. 8(c)]. There are

two edges linking vertices 4 and 5, one of which is wrapped

[Fig. 8(b)] and the entries 4,5 and 5,4 are coded 21+ and 21�,

respectively [Fig. 8(c)]. When describing a wrapped edge, we

need only to refer to the matrix element in the upper triangle

(or lower triangle) instead of both as the repeat unit of any

chain graph is translationally equivalent to adjacent repeat

units such that if n edges link to vertices of the adjacent repeat

unit in the +c direction, n edges must also link to vertices of

the adjacent repeat unit in the �c direction.

7. Generation of all non-isomorphic chain graphs

We have developed finite representations of infinite chains

using wrapped edges. Now we wish to invert this process and

generate all possible non-isomorphic graphs that correspond

to infinite chains. A graph consists of two sets, a vertex set and

an edge set (Section 4), each of which may include at least one

subset. We may treat the generation of all possible non-

isomorphic graphs as a two-component process. First, we

generate all possible vertex sets and vertex subsets consistent

with chains, ribbons and tubes (Section 2), and second, we

generate all possible edge sets and edge subsets consistent

with each vertex set and vertex subset already defined.

8. Generation of vertex sets for chain graphs

Each vertex is characterized by its degree, and we express the

degree structure of a vertex set using the vertex connectivity
cVr ( = 1Vr

2Vr
3Vr

4Vr). Thus, we may use cVr to generate all

possible vertex sets by writing all possible cVr expressions for
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Figure 8
(a) A chain graph with vertex connectivity 2V1

3V4, (b) the corresponding
wrapped graph and (c) the corresponding adjacency matrix. Curved black
lines in (b) represent wrapped edges in (a); green and red arrows in (b)
and matrix-element superscripts in (c) indicate the number and direction
of wrapped edges. Note that it is not necessary to indicate the direction of
the wrapped edges linking vertices 2 and 3. Dashed black lines show the
repeat units of each chain graph.

Figure 9
The vertex connectivity, cVr, of observed chain, ribbon and tube
topologies as a function of

P
r for c = 1–4. Most observed topologies

have
P

r � 8; hence the boundary limit for graph generation has been set
to
P

r = 8 and is shown by the red line. Squares indicate the cVr

expression and
P

r for one (yellow) and more than one (green) observed
topology. [Data from Day & Hawthorne (2020).]



chain graphs with vertex degrees c = 1, 2, 3 and 4 where r = 1 to

1 by sequentially increasing the values of c and r. Obviously

we need to limit the value of r for practical reasons, and we

may justify this by observing the distribution of vertex sets in

observed chain, ribbon and tube minerals (Fig. 9). As shown

by Day & Hawthorne (2020), most structures have
P

r � 8

and hence we will use 8 as the boundary limit for
P

r. We will

order the 1Vr
2Vr

3Vr
4Vr expressions in terms of increasing rank

(i.e. the number of individual cVr values). For a given rank, we

sequentially increase the value of c for r = 1 to 8; Table 1 shows

the cVr expressions produced in this way. For a rank of 1,

where c = 1, a chain graph is not possible: 1V1 corresponds to a

single vertex; 1V2 corresponds to a [T2O7] dimer, and no

further linkages are possible without changing the value of c

(Table 1). Thus, the simplest possible chain arrangement has

the vertex connectivity 2V1, followed by 2V2, 2V3, 2V4 etc. For

higher ranks, we order cVr first in terms of c and then in terms

of r, hence for a rank of 2: 2Vr
3Vr, we have 2V1

3Vr,
2V2

3Vr,
2V3

3Vr etc.

8.1. Determining vertex subsets using characteristic poly-
nomial equations

cVr describes only the degree of the vertices in the repeat

unit of a chain graph. Vertices that are isomorphic (symme-

trically equivalent) (i) must have the same degree, and (ii) the

degrees of neighbouring (next-nearest, next-next-nearest etc.)

vertices must be identical. Thus, the vertex set of any graph

may be divided into subsets of isomorphic vertices.

The characteristic polynomial, p(�), is an equation that

describes a square matrix (A) whose eigenvalues are the roots

of p(�) and whose trace and determinant are coefficients of

the polynomial. I is the identity matrix of [A] and � is a scalar

multiple that is an eigenvalue of (A) if (A � �I) = 0. Each

characteristic polynomial equation has n solutions and

therefore n eigenvalues (or roots) where n equals the

dimension of (A). We may write the characteristic polynomial

as follows:

p �ð Þ ¼ det A� �Ið Þ: ð1Þ

We can determine which vertices of a given graph belong to

the same vertex subset by deleting one vertex in turn and

calculating the characteristic polynomial equation of the

adjacency matrices of the resultant graphs which are referred

to as reduced graphs and reduced adjacency matrices. If the

characteristic polynomial equations of two reduced graphs are

identical, the eigenvalues of the two reduced matrices are

identical and hence the two vertices removed from the original

graph are isomorphic and belong to the same vertex subset. It

follows that one must calculate n characteristic polynomial

equations for a given n � n matrix. The characteristic poly-

nomial equations were calculated for all matrices corre-

sponding to each cVr expression using the MatLabR2019b

code in Appendix B (see the supporting information).

An example of how this calculation is done for a 4 � 4

adjacency matrix is shown in Figs. 10 and 11. In Fig. 10(a),

vertices 1 and 2 have degree 2 and therefore must belong to

different vertex subsets than vertices 3 and 4 which have

degree 3. However, one cannot assume vertices of the same

degree belong to the same vertex subset until they are

confirmed to be isomorphic using characteristic polynomial

equations. We begin by removing vertex 1 from the graph and

matrix ([A]) shown in Fig. 10(a). The reduced graph and

reduced adjacency matrix, [A] � [1], are shown in Fig. 10(b)

and the characteristic polynomial equation of this reduced

matrix, labelled (�)([A]�1), is calculated as shown in Fig. 10(c)

using the formula above. The reduced matrices after vertices 2,

3 and 4 are removed [labelled (�)([A]�2), p(�)([A]�3) and

p(�)([A]�4), respectively] are shown in Figs. 11(a), 11(b) and

11(c). Here, (�)([A]�3) and p(�)([A]�4) are identical and hence

vertices 3 and 4 are isomorphic and belong to the same vertex

subset [Fig. 11(d)]; p(�)([A]�1) and p(�)([A]�2) are different and

vertices 1 and 2 are non-isomorphic and belong to different

vertex subsets [Fig. 11(d)]. Removal of vertices 3 and 4 in turn

results in the same reduced graph and reduced adjacency

matrix [Figs. 11(b) and 11(c)].

If the characteristic polynomial equation of an n � n

adjacency matrix is the same as the characteristic polynomial

equation of another n � n adjacency matrix, these matrices

(and their corresponding graphs) are isomorphic.

This method is laborious and becomes impractical for larger

matrices (graphs with many vertices). For larger matrices, it is

more practical to use eigenvector centrality (EVC) heuristics
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Table 1
Hierarchical ordering scheme of cVr values where r = 1–1 and c = 1–4.

Rank 1 2 3 4

1Vr
1Vr

2Vr
1Vr

2Vr
3Vr

1Vr
2Vr

3Vr
4Vr

2Vr
1Vr

3Vr
1Vr

2Vr
4Vr

3Vr
1Vr

4Vr
1Vr

3Vr
4Vr

4Vr
2Vr

3Vr
2Vr

3Vr
4Vr

2Vr
4Vr

3Vr
4Vr

Figure 10
(a) A graph with vertex connectivity 2V2

3V2 and its corresponding
adjacency matrix ([A]), (b) the reduced graph produced by removing
vertex 1 from the graph in (a) and the corresponding reduced adjacency
matrix ([A]�1), and (c) the characteristic polynomial equation for the
reduced adjacency matrix in (b): [p(�)[A]�1].



(Meghanathan, 2015). The EVC of a given vertex is a measure

of the degree of that vertex and the degrees of neighbouring

vertices. If the EVC values of the vertices of two graphs are

not identical, the graphs are non-isomorphic; if the EVC

values of the vertices of the two graphs are identical, the

graphs are possibly isomorphic. Thus, the EVC method can

show that two graphs are non-isomorphic. It cannot defini-

tively show that graphs are isomorphic, although we are not

aware of any example of two isomorphic graphs with different

EVC values.

9. Derivation of matrix-element combinations and
generation of edge sets and edge subsets

In Sections 8 and 8.1, we proposed a method for generating

all possible cVr expressions (vertex sets) and detecting

isomorphism amongst vertices of a given matrix or matrices

using characteristic polynomial equations. Now we may begin

to derive every distinct adjacency matrix and all possible non-

isomorphic finite graphs that correspond to such matrices for

all possible cVr expressions (up to the boundary limit). To do

this, all unique combinations of the matrix elements 1, 2, 21

and/or 22 must be derived for each cVr. Each matrix-element

combination corresponds to one or more distinct matrices and

their non-isomorphic finite graphs that are generated as

described below. Thus, deriving all matrix-element combina-

tions for a given cVr allows us to generate the set of all non-

isomorphic finite graphs that conform to that cVr. Two n � n

matrices are referred to as distinct if their n characteristic

polynomial equations are not identical. The edge subsets for

each of the non-isomorphic finite graphs (for a given cVr) can

then be determined using the vertex subsets of such graphs

determined using the characteristic polynomial equations as

described above. One can then generate all possible non-

isomorphic wrapped graphs with specific vertex connectivities,
cVr, using the edge subsets of the finite graphs from which the

wrapped graphs are generated.

9.1. Matrix-element combinations

For a topological repeat unit described by the vertex

connectivity ciVri = 1Vr1
2Vr2

3Vr3
4Vr4, the number of edges e =P

ciri/2, i = 1, 4. The number of edges in the corresponding

adjacency matrix eA = e � 2 as each edge starts and ends on a

vertex and is therefore counted twice. For a specific cVr, we

calculate all possible combinations of the matrix elements 0, 1,

2, 21, 22 that sum to the number of edges in the adjacency

matrix (eA) for that cVr. These matrix-element combinations

are used to generate a set of n-dimensional matrices where n is

the number of vertices in the cVr expression of interest, and is

given by n =
P

ri, i = 1, 4. We derive matrix-element combi-

nations that sum to eA rather than e because we use the

diagonal elements of each matrix to store additional infor-

mation (occupied by 0 or 2) and therefore all matrix positions

are considered rather than those in just the upper or lower

triangle of the matrix (i.e. Fig. 6). Some of the possible matrix-

element combinations for a given cVr may not be valid and

need not be considered as they correspond to matrices that

violate one or more of the following constraints:

(i) The matrix must be symmetric about the diagonal (e.g.

Fig. 6) unless it contains the elements 21+ or 21�.

(ii) The diagonal cells of the matrix can only be occupied by

0 and/or 2, and off-diagonal cells cannot be occupied by 2.
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Table 2
Matrix-element combinations for vertex connectivity 2V2

3V2.

Italics: valid matrix-element combination. Bold: invalid matrix-element combination. Matrix-element combinations are written as (m1� 1)(m2� 2)(m3� 21)(m4�

22) where mi are the numbers of those matrix elements, and are numbered with square brackets and cited in the text accordingly.

# of 2’s, 21’s and 22’s

0 1 2 3 4 5

[1] (10 � 1) [2] (8 � 1)(1 � 2) [3] (6 � 1)(2 � 2) [6] (4 � 1)(3 � 2) [9] (2 � 1)(4 � 2) [15] (5 � 2)
[4] (6 � 1)(2 � 21) [7] (4 � 1)(1 � 2)(2 � 21) [10] (2 � 1)(2 � 2)(2 � 21) [16] (1 � 2)(4 � 21)
[5] (6 � 1)(2 � 22) [8] (4 � 1)(1 � 2)(2 � 22) [11] (2 � 1)(2 � 2)(2 � 22) [17] (1 � 2)(2 � 21)(2 � 22)

[12] (2 � 1)(4 � 21) [18] (1 � 2)(4 � 22)
[13] (2 � 1)(2 � 21)(2 � 22) [19] (3 � 2)(2 � 21)
[14] (2 � 1)(4 � 22) [20] (3 � 2)(2 � 22)

Figure 11
The reduced graphs, corresponding reduced adjacency matrices, and
characteristic polynomial equations after the following vertices have been
removed from the graph in Fig. 10(a): (a) vertex 2, p(�)[A]�2, (b) vertex 3,
p(�)[A]�3 and (c) vertex 4, p(�)[A]�4. (d) The original graph, adjacency
matrix and the vertex subsets determined using characteristic polynomial
equations.



If the matrix accords with these constraints, the associated

matrix-element combination is valid and will give one or more

finite graphs that correspond to that cVr expression.

The following example shows how matrix-element combi-

nations are derived for 2V2
3V2 and determined to be either

valid or invalid. The number of vertices n = (2 + 2) is 4, the

number of edges e is [(2 � 2) + (3 � 2)]/2 = 5, the number of

edges in the adjacency matrix eA is 5 � 2 = 10, the number of

matrix positions is 42 = 16. The possible matrix-element

combinations (that sum to eA = 10) are shown in Table 2,

labelled [1]–[20]. One can then determine which of these

matrix-element combinations are invalid by attempting to

construct a 4 � 4 matrix using the 20 element combinations.

Table 2 shows that element combinations [1]–[14] (shown in

italics) generate matrices that accord with the constraints

listed above and are therefore valid; these matrices are shown

in Fig. 12 and the corresponding non-isomorphic finite graphs

are shown in Fig. 13. Matrix-element combinations [15]–[20]

(shown in bold, Table 2) force at least one 4-connected vertex

(a row or column that sums to 4) and only generate matrices

that violate constraint (i) and/or correspond to graphs with

vertex connectivities that differ from 2V2
3V2 and therefore

need not be considered. Matrix-element combinations are

written as (m1 � 1)(m2 � 2)(m3 � 21)(m4 � 22) where mi are

the numbers of those matrix elements.

9.2. Multiplicity of matrix-element combinations and deri-
vation of proto-graphs

Each valid matrix-element combination generates one or

more distinct adjacency matrices, depending on the number of

vertex subsets generated in each case. Each of these adjacency

matrices describes one finite graph. These graphs are not chain

graphs but are used to derive chain graphs by systematically

unwrapping all combinations of their edges; we will call these

graphs proto-graphs. For 2V2
3V2, there are 14 valid matrix-

element combinations (Table 2). However, Figs. 12 and 13

show 18 distinct matrices and non-isomorphic proto-graphs, as

matrix-element combinations [7], [8], [10] and [11] each

correspond to one additional distinct matrix, labelled [70], [80],

[100] and [110], that each generate an additional non-

isomorphic proto-graph (Fig. 13). For a given cVr, each valid

matrix-element combination corresponds to at least one non-

isomorphic proto-graph. We may determine how many non-

isomorphic proto-graphs correspond to each valid matrix-

element combination using the following method.

First, we permute the positions of the matrix elements (not

just the rows and columns) in one of the matrices that corre-

spond to the valid matrix-element combinations for the

specific cVr of interest. For vertex connectivity 2V2
3V2, there

are 14 valid matrix-element combinations (Table 2), and one

permutes the position of the matrix elements in the 14 asso-

ciated adjacency matrices (Fig. 12). If any of the valid

permuted matrices have non-identical vertex subsets (any

vertices associated with different characteristic polynomial

equations), such matrices are distinct from the original matrix
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Figure 13
All valid matrix-element combinations and their associated proto-graphs
with vertex connectivity 2V2

3V2. The corresponding adjacency matrices
are shown in Fig. 12.

Figure 12
All distinct adjacency matrices that produce proto-graphs with vertex
connectivity 2V2

3V2. The matrix-element combination (4 � 1)(1 � 2)(2 �
21) corresponds to matrices [7] and [70], (4 � 1)(1 � 2)(2 � 22)
corresponds to matrices [8] and [80], (2� 1)(2� 2)(2� 21) corresponds to
matrices [10] and [100], and (2 � 1)(2 � 2)(2 � 22) corresponds to
matrices [11] and [110]. All other valid matrix-element combinations
correspond to a single matrix.



and will produce an additional non-isomorphic proto-graph.

We derive all valid permutations of a given matrix and extract

all unique permutations (those with different vertex subsets)

using the MatLabR2019b code in Appendix B (supporting

information). Fig. 14(a) shows matrix [1] [matrix-element

combination (10 � 1)] (Fig. 12) and the corresponding proto-

graph [1] (Fig. 13). In Figs. 14(b), 14(c) and 14(d), three

permuted versions of the original matrix [1] [Fig. 14(a)] are

shown along with the corresponding proto-graphs and the

vertex subsets. The vertex subsets for each of the permuted

matrices are the same and all proto-graphs are isomorphic as

the characteristic polynomial equations for reduced matrices

where a vertex of subset [1] has been removed are identical

and the characteristic polynomial equations for reduced

matrices where a vertex of subset [2] has been removed are

identical (Fig. 14). Labels may be interchanged between

vertices of the same subset as such vertices are isomorphic [e.g.

compare Figs. 14(a) and 14(c)].

Although only three of the permuted versions of matrix [1]

are shown in Fig. 13, all permutations correspond to proto-

graphs with identical characteristic polynomials, and we

therefore conclude that the matrix-element combination (10

� 1) corresponds to only a single proto-graph with vertex

connectivity 2V2
3V2. Next consider Fig. 15(a); here we examine

matrix [7] [matrix-element combination (4 � 1)(1 � 2)(2 �

21)] (Fig. 11) and the corresponding proto-graph [7] (Fig. 12).

Here, the vertex subsets of the permuted matrices in Figs.

15(b) and 15(c) and of the original matrix [7] [Fig. 15(a)] are

identical but are different from the vertex subsets of permuted

matrix [70] shown in Fig. 15(d) (indicated by the characteristic

polynomial equations). Although there are many more valid

permuted versions of matrix [7] compared with what is shown

in Fig. 15, all correspond to proto-graphs with vertex subsets

identical to those of either graph [7] or [70]. Thus the matrix-

element combination (4 � 1)(1 � 2)(2 � 21) corresponds to

two non-isomorphic proto-graphs (graphs [7] and [70]; Fig. 12).

Now consider Fig. 16(a) which shows matrix [10] [matrix-

element combination (2 � 1)(2 � 2)(2 � 21)] (Fig. 11) and the

corresponding proto-graph [10] (Fig. 12). Here, the vertex

subsets of the permuted matrices in Figs. 16(b) and 16(c) and

of the original matrix [10] [Fig. 16(a)] are identical but are

different from the vertex subsets of permuted matrix [100]

shown in Fig. 16(d) (indicated by the characteristic polynomial

equations). There are two different vertex subsets and we

conclude that the matrix-element combination (2 � 1)(2 �

2)(2 � 21) corresponds to two non-isomorphic proto-graphs

(graphs [10] and [100]) (Fig. 12). For vertex connectivity
2V2

3V2, 4 of the 14 valid matrix-element combinations, [7], [8],

[10] and [11], correspond to two distinct valid matrices (Fig.

11, [70], [80], [100] and [110]) and two non-isomorphic proto-

graphs (Fig. 12, [70], [80], [100] and [110]). Thus, there are (10 �

1) + (4 � 2) = 18 non-isomorphic proto-graphs with vertex

connectivity 2V2
3V2 (Fig. 12).

9.3. Derivation of edge subsets using vertex subsets

Now that we have a method for deriving the set of all

distinct valid matrices and corresponding non-isomorphic

proto-graphs for a given cVr, the edge subsets for each proto-

graph that correspond to such matrices can be determined.

Two edges belong to the same subset if and only if they are

both wrapped (or both not wrapped) and if the respective

vertices to which they link belong to the same vertex subset.
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Figure 15
For vertex connectivity 2V2

3V2, (a) adjacency matrix [7] for the matrix-
element combination (4 � 1)(1 � 2)(2 � 21), the corresponding proto-
graph, the characteristic polynomial equations of the reduced proto-
graphs and the resulting vertex subsets. (b), (c), (d) Three permutated
versions of this adjacency matrix and proto-graph, and the characteristic
polynomial equations of the reduced adjacency matrices. The character-
istic polynomial equations of the reduced adjacency matrices in (b) and
(c) are identical to those in (a) (adjacency matrix [7]), confirming that the
reduced proto-graphs are isomorphic. The characteristic polynomial
equations for the reduced adjacency matrices derived from adjacency
matrix [70], shown in (d), are different, confirming that this proto-graph is
non-isomorphic with the other proto-graphs.

Figure 14
For vertex connectivity 2V2

3V2, (a) the adjacency matrix [1] for the
matrix-element combination (10� 1), the corresponding proto-graph, the
characteristic polynomial equations of the reduced proto-graphs and the
resulting vertex subsets; (b), (c) and (d) three permutated versions of
this adjacency matrix and proto-graph. The characteristic polynomial
equations of the reduced adjacency matrices are identical, confirming that
these adjacency matrices correspond to isomorphic proto-graphs.



Note that wrapped edges are italicized in the edge subsets

given in the figures. Consider the proto-graph with vertex

connectivity 2V2
3V2 in Fig. 17(a). The characteristic poly-

nomial equations (Section 8.1) show that vertices 1 and 3 are

isomorphic and vertices 2 and 4 are isomorphic, and hence this

proto-graph has two vertex subsets [Fig. 17(b)]. This proto-

graph has five edges, four of which link a vertex of subset [1] to

a vertex of subset [2] and are therefore equivalent and belong

to the same edge subset [Fig. 17(c)]. The fifth edge links a

vertex of subset [1] to another vertex of subset [1] and

therefore belongs to a second edge subset [Fig. 17(c)].

Consider the proto-graph with vertex connectivity 2V2
3V2 in

Fig. 17(d); there are two vertex subsets that each contain two

vertices [Fig. 17(e)] and four edges that link vertices of subset

[1] to vertices of subset [2] and one edge that links vertices of

subset [2]. However, two of the four edges that link vertices of

subset [1] to vertices of subset [2] are wrapped and therefore

belong to a third edge subset [Fig. 17(f)]. Thus, once the vertex

subsets have been established, the edge subsets may be read

from the corresponding proto-graph by inspection.

9.4. MatLab limitations and multiplicity of matrix-element
combinations with matrix elements 21 and 22

The method described in Sections 9.1 and 9.2 generates all

possible non-isomorphic proto-graphs for a given cVr but is

extremely laborious and impractical where n = 5–8 as the

number of possible matrix-element permutations (and non-

isomorphic proto-graphs) increases exponentially as the

number and degree of such vertices increase. Consequently,

we developed MatLabR2019b code (Appendix B, supporting

information) to derive the set of proto-graphs for a given cVr.

All valid matrix-element combinations and their associated

proto-graphs that contain the matrix elements 1, 2 and/or 22

are generated using this code. However, this code does not

differentiate between curved and straight lines as the memory

consumption for such a code is impractically large. Conse-

quently, valid matrix-element combinations that contain the

matrix element 21 must be derived manually.

Consider the MatLabR2019b output (Appendix B,

supporting information) for the vertex connectivity 4V4 in Fig.

18. Only proto-graphs that correspond to matrix-element

combinations with 1, 2 and/or 22 are produced and additional

valid matrix-element combinations (and their corresponding

proto-graphs) that involve 21 may now be derived. As an

example, consider the matrix-element combination (2 � 2)(6

� 22) and the corresponding proto-graph and edge subsets in

Fig. 19(a). We begin by converting two of the 22 matrix

elements in the matrix in Fig. 19(a) to 21 (change one of the

curved 2–4 edges to a straight edge) to generate the matrix-

element combination (2 � 2)(2 � 21)(4 � 22) and the corre-

sponding non-isomorphic proto-graph in Fig. 19(b). Next, we

convert four of the 22 matrix elements in the matrix in Fig.

19(a) to 21 (the 2–4 and 1–3 edges) to generate the matrix-

element combination (2 � 2)(4 � 21)(2 � 22) and the corre-

sponding non-isomorphic proto-graph in Fig. 19(c). Finally, we

convert all six of the 22 matrix elements in the matrix in Fig.

19(a) to 21 (the 2–4, 1–3 and 1–2 edges) to generate the matrix-

element combination (2 � 2)(6 � 21) and the corresponding

non-isomorphic proto-graph in Fig. 19(d). We can then repeat

this process for the other matrix-element combinations in Fig.

18 that contain the matrix element 22. For a given matrix-

element combination that contains n 22 matrix elements, there

are at least n/2 additional matrix-element combinations and

associated proto-graphs that need to be generated.
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Figure 17
For vertex connectivity 2V2

3V2, (a) the proto-graph for the matrix-
element combination (10 � 1), (b) the corresponding vertex subsets, (c)
the corresponding edge subsets. (d) The proto-graph for the matrix-
element combination (2 � 1)(4 � 21), (e) the corresponding vertex
subsets, (f) the corresponding edge subsets.

Figure 16
For vertex connectivity 2V2

3V2, (a) adjacency matrix [10] for the matrix-
element combination (2 � 1)(2 � 2)(2 � 21), the corresponding proto-
graph, the characteristic polynomial equations of the reduced proto-
graphs and the resulting vertex subsets. (b), (c), (d) Three permutated
versions of this adjacency matrix and proto-graph, and the characteristic
polynomial equations of the reduced adjacency matrices. The character-
istic polynomial equations of the reduced adjacency matrices in (b) and
(c) are identical to those in (a) (adjacency matrix [10]), confirming that
these proto-graphs are isomorphic. The characteristic polynomial
equations for the reduced adjacency matrices derived from adjacency
matrix [100], shown in (d), are different, confirming that this proto-graph
is non-isomorphic with the proto-graphs in (b) and (c).



For matrix-element combinations that contain both matrix

elements 21 and 22, there may be more than one distinct

adjacency matrix and non-isomorphic proto-graph. To

produce the matrix-element combination (2 � 2)(2 � 21)(4 �

22) [Fig. 19(b)], one of the 22 edges in Figs. 19(a), 2–4, 1–3 or 1–

2, must be converted to a 21 edge. However, the 1–3 and 2–4

edges belong to edge subset [2] and the 1–2 edges belong to

edge subset [1]. It follows that there are two possible non-

isomorphic proto-graphs that conform to the matrix-element

combination (2 � 2)(2 � 21)(4 � 22), one in which one of the

2–4 or 1–3 edges is straight (a 21 matrix element) [Fig. 19(b)]

and another in which one of the 1–2 edges is straight [Fig.

19(e)]. To produce the matrix-element combination (2 � 2)(4

� 21)(2 � 22) [Fig. 19(c)], two of the 22 edges in Figs. 19(a), 2–

4, 1–3 and/or 1–2, must be converted to a 21 edge. Again, there

are two possible non-isomorphic proto-graphs. The first [Fig.

19(c)] is produced by selecting both 22 edges from subset [2]

[Fig. 19(a)] where one of the 2–4 and 1–3 edges is straight. The

second is produced by selecting one 22 edge from subset [1]

and another from subset [2] where one of the 2–4 (or 1–3) and

1–2 edges is straight [Fig. 19(f)]. For vertex connectivity 4V4,

all valid matrix-element combinations and adjacency matrices

are shown in Appendix E (supporting information) and all

non-isomorphic proto-graphs in Appendix F (supporting

information).

All valid matrix-element combinations that contain the

matrix element 21 may be derived using the MatLab output

(i.e. Fig. 18). In some cases, an additional procedure is

required to derive multiple non-isomorphic proto-graphs (if

they exist) for matrix-element combinations that contain the

matrix elements 21 and 22 [as done for the matrix-element

combinations in Figs. 19(b) and 19(c)]. As described in Section

9.2, other matrix-element combinations (those that do not

contain matrix elements 21 and/or 22) may correspond to more

than one non-isomorphic proto-graph but such graphs will be

derived by the MatLabR2019b code (Appendix B, supporting

information).

9.5. Assigning wrapped edges and unwrapping edges

Next, we assign wrapped edges and all possible directions of

unwrapping to proto-graphs to produce directed proto-graphs.

A directed proto-graph is a proto-graph in which one or more

edges have been assigned as wrapped in either the +c or �c

direction, and is produced by (i) assigning one or more straight

edges of a given proto-graph as wrapped in the +c or �c

direction and/or (ii) assigning an unwrapping direction (+c or

�c) to one or more wrapped (curved) edges of a proto-graph.

Fig. 20(a) shows a proto-graph, Fig. 20(b) shows a corre-

sponding directed proto-graph in which the 1–2 edge is

assigned as wrapped, and Fig. 20(c) shows the corresponding

(unwrapped) chain graph. Assigning and unwrapping the 1–3,

2–4 or 3–4 edges results in the same chain graph [Fig. 20(c)] as

these edges belong to the same edge subset as edge 1–2 [Fig.

20(a)]. Assigning the 2–3 edge as wrapped results in a different

directed proto-graph [Fig. 20(d)] and unwrapping this graph

generates a chain graph [Fig. 20(e)] that is non-isomorphic

with the chain graph in Fig. 20(c) as the 1–2 and 2–3 edges

belong to different edge subsets [Fig. 20(a)]. When unwrap-
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Figure 19
For vertex connectivity 4V4, the adjacency matrix, corresponding proto-
graph and edge subsets for the matrix-element combinations (a) (2� 2)(6
� 22), (b) (2� 2)(2� 21)(4� 22), (c) (2� 2)(4� 21)(2� 22) and (d) (2�
2)(6 � 21). The matrix-element combinations (2� 2)(2 � 21)(4 � 22) and
(2 � 2)(4 � 21)(2 � 22) correspond to a second distinct matrix and non-
isomorphic proto-graph shown in (e) and (f), respectively. The adjacency
matrices and corresponding proto-graphs in (b)–(f) are not produced by
the MatLabR2019b code and must be derived manually. In edge subsets,
wrapped edges are italicized.

Figure 18
The MatLabR2019b output of all possible valid matrix-element
combinations and corresponding non-isomorphic proto-graphs for the
vertex connectivity 4V4.



ping a single edge in a series of directed proto-graphs gener-

ated from a single proto-graph, non-isomorphic chain graphs

result only where the unwrapped edges belong to different

edge subsets.

10. Derivation of all non-isomorphic chain and cluster
graphs

For a given cVr, we may use the methods described above to

derive all possible non-isomorphic proto-graphs (together

with their associated adjacency matrices) and to determine

their vertex and edge subsets. A particular proto-graph may

then be used to generate all non-isomorphic directed proto-

graphs with which it is conformable. This is done in two steps:

(i) all curved edges in the proto-graph are assigned directions

in which they are to be unwrapped (by assigning green and red

arrows, e.g. Fig. 20); (ii) all unique combinations of straight

edges in the proto-graph (except for 21 straight edges as

unwrapping this straight edge results in the matrix element 22

which we have already produced in other matrix-element

combinations) are similarly assigned directions in which they

are to be unwrapped. The result of (i) and (ii) is a set of

directed proto-graphs. In turn, the wrapped edges of these

directed proto-graphs may be unwrapped to generate all non-

isomorphic chain and cluster graphs. There are two types of

edges that may occur in the directed proto-graphs: curved

(wrapped) edges and straight edges. Curved edges must link to

vertices of adjacent repeat units and hence curved edges must

always be unwrapped when generating chain graphs. As

shown in Fig. 20 (Section 9.5), when assigning a single straight

edge as wrapped, only one edge from each subset needs to be

chosen to generate the set of all non-isomorphic directed

proto-graphs. When assigning more than one straight edge as

wrapped, all unique combinations of straight edges (edge

combinations) must be derived (irrespective of the edge

subset to which they belong) to produce the set of all non-

isomorphic directed proto-graphs and unwrapping such

directed proto-graphs will generate all non-isomorphic chain

graphs conformable with the parent proto-graph. For a given

proto-graph, edge combinations and the corresponding

directed proto-graphs are referred to as unique if the edges

assigned as wrapped do not belong to the same edge subsets

and/or if the directions assigned to such edges are different.

Once the combinations of straight edges of the proto-graph

are assigned as wrapped, those edges are replaced by curved

edges and marked with red and green arrows to indicate the

directions of unwrapping: green = +c, red =�c. Where an edge

is assigned as wrapped, the direction in which this edge is to be

unwrapped is appended to the corresponding matrix element

as a superscript as described in Section 6.

10.1. Unwrapping edges and redundant unwrappings:
vertices of degree 1 and 2

All unique combinations of edges must be assigned as

wrapped for each proto-graph for a given cVr and then

unwrapped to produce all non-isomorphic chain graphs that

correspond to that cVr. However, many of these edge combi-

nations correspond to directed proto-graphs that, once

unwrapped, produce chain graphs that are isomorphic with

previously generated chain graphs. Consider the proto-graph

with vertex connectivity 1V1
3V3 shown in Fig. 21(a). This

proto-graph has a curved edge linking vertices 3 and 4, and

this edge must be assigned coloured arrows to indicate the

direction in which it will be unwrapped before straight edges

can be assigned as wrapped edges. For edges that are curved in

the proto-graph, the direction of unwrapping is not significant;

this may be seen in the unwrapped chain graph [Fig. 21(c)]

where vertex 3 links to vertex 4 in the +c direction and vertex 4

links to vertex 3 in the �c direction. Fig. 21(b) shows the

directed proto-graph produced by assigning coloured arrows

to edge 3–4 and Fig. 21(c) shows the corresponding chain

graph in which vertices and edges of a single repeat have been

coloured yellow and green, respectively. Fig. 21(d) shows the

directed proto-graph produced by assigning the 3–4 and 1–2

edges as wrapped, and Fig. 21(e) shows the corresponding

chain graph in which unwrapping of the 1–2 edge in the +c

direction is denoted by the blue arrow and the original

unwrapped 1–2 edge is shown by the dotted line. However,

unwrapping the 1–2 edge does not produce a new chain graph

[compare Figs. 21(c) and 21(e)]. In Fig. 21(f), the 3–4 and 1–2

edges are also unwrapped, but the 1–2 edge is unwrapped in

the �c direction; again, we do not produce a new chain graph

[Fig. 21(g)] [compare Figs. 21(c), 21(e) and 21(g)]. Vertex 1 has

the degree 1 and is connected to the chain by a single 1–2 edge.

Therefore, assigning this edge as wrapped in either direction

must produce a chain graph isomorphic with the original chain

graph in which the 1–2 edge is not unwrapped [Fig. 21(c)].

Unwrapping any edge linked to a vertex of degree 1 [e.g.

vertex 1 in Figs. 21(d), 21(f)] will produce a chain graph

isomorphic with that produced by unwrapping the same

directed proto-graph in which this edge is not unwrapped.
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Figure 20
For vertex connectivity 2V2

3V2, (a) a proto-graph for the matrix-element
combination (10 � 1) and its vertex and edge subsets, (b) the directed
proto-graph in which the 1–2 edge (of edge subset [2]) has been assigned
as wrapped in the +c direction, and (c) the resultant chain graph. (d) The
directed proto-graph in which the 2–3 edge (of edge subset [1]) has been
assigned as wrapped in the +c direction, and (e) the resultant chain graph.
Note how unwrapping single edges that belong to different edge subsets
results in non-isomorphic chain graphs. Legend as in Fig. 7; the green and
red arrows on the curved 1–2 and 2–3 edges denote the directions in
which the edge is to be unwrapped: green = in the +c direction, red = in
the �c direction.



Consider the proto-graph with vertex connectivity 2V2
3V2 in

Fig. 22(a); there are no curved edges and we may begin by

assigning the 2–3 edge as wrapped, generating the resultant

directed proto-graph in Fig. 22(b). Fig. 22(c) shows the chain

graph produced by unwrapping the 2–3 edge in the �c

direction. If the 2–3, 1–2 and 1–3 edges of the same proto-

graph are assigned as wrapped, the directed proto-graph

shown in Fig. 22(d) is generated. Fig. 22(e) shows the chain

graph generated by unwrapping the 2–3 edge in the �c

direction, the 1–2 edge in the +c direction and the 1–3 edge in

the +c direction; the resultant chain graph [Fig. 22(e)] is

isomorphic with the chain graph in Fig. 22(c). On generation

of all unique edge combinations for this proto-graph [Fig.

22(a)], edge combinations that correspond to isomorphic

chain graphs can be determined by inspection of the corre-

sponding edge subsets. In Fig. 22(d), edges 1–2 and 1–3 are

assigned as wrapped and therefore belong to a different edge

subset [3] [compare with edge subsets in Figs. 22(a), 22(b)].

These edges are both unwrapped in the +c direction and are

both linked to vertex 1, and therefore are redundant (may be

omitted) and the resultant edge subset (and adjacency matrix)

is identical to that in Fig. 22(b). The chain graph in Fig. 22(e) is

isomorphic with the chain graph in Fig. 22(c), and hence

unwrapping the edge combination (1–2+, 1–3+ and 2–3–) is

redundant and the corresponding directed proto-graph [Fig.

22(d)] need not be generated.
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Figure 22
For vertex connectivity 2V2

3V2, (a) a proto-graph [identical to that in Fig.
20(a)] for the matrix-element combination (10 � 1) and the corre-
sponding vertex and edge subsets, (b) the directed proto-graph in which
the 2–3 edge is assigned as wrapped in the �c direction and the
corresponding adjacency matrix and edge subsets, and (c) the resultant
chain graph. (d) The directed proto-graph in which the 1–2 and 1–3 edges
have been assigned as wrapped in the +c direction and the 2–3 edge in the
�c direction, and the corresponding adjacency matrix and edge subsets,
and (e) the resultant chain graph. (f) The directed proto-graph in which
the 2–3 and 1–2 edges have been assigned as wrapped in the �c direction
and the 1–3 edge in the +c direction, and the corresponding adjacency
matrix and edge subsets, (g) the resultant chain graph, and (h) an
untangled version of this chain graph. Note that the chain graph in (e) is
isomorphic with the chain graph in (c) as unwrappings involving vertex 1
in (d) are redundant. Legend as in Fig. 21.

Figure 21
For vertex connectivity 1V1

3V3, (a) a proto-graph for the matrix-element
combination (6 � 1)(2 � 21) and the corresponding vertex and edge
subsets, (b) the directed proto-graph in which the 3–4 edge is assigned as
wrapped in the +c direction and the corresponding adjacency matrix and
edge subsets, and (c) the resultant chain graph. (d) The directed proto-
graph in which the 3–4 and 1–2 edges have been assigned as wrapped in
the +c direction and the corresponding adjacency matrix and edge
subsets, and (e) the resultant chain graph. (f) The directed proto-graph in
which the 3–4 and 1–2 edges have been assigned as wrapped in the +c and
�c directions, respectively, and the corresponding adjacency matrix and
edge subsets, and (g) the resultant chain graph. Note that the chain graphs
in (e) and (g) are isomorphic with the chain graph in (c). The blue arrows
show the direction of unwrapping of the 1–2 edge in (e) the +c direction
and in (g) the �c direction. All edges and vertices of a single repeat unit
in each chain graph are shown in green and yellow, respectively. Legend
as in Figs. 7 and 20.



The same edges (1–2, 1–3 and 2–3) are assigned as wrapped

as in Fig. 22(d), but the 1–2 edge is to be unwrapped in the �c

direction and the resultant directed proto-graph is shown in

Fig. 22(f). The corresponding chain graph [Fig. 22(g)] is non-

isomorphic with the chain graphs in Figs. 22(c), 22(e) which is

clear from Fig. 22(h) which shows the chain graph in Fig. 22(g)

with some of the visual overlap of the edges removed (we refer

to this process as untangling). Both edges connected to vertex

1 (1–2 and 1–3) are unwrapped in opposite directions and

therefore are not redundant; hence this edge subset [Fig. 22(f)]

must be used as the corresponding directed proto-graph may

produce a new non-isomorphic chain graph [Figs. 22(g),

22(h)].

Consider the same proto-graph in Fig. 23(a). We may

choose an edge combination in which the 1–2, 1–3, 2–4 and 3–4

edges are assigned as wrapped in the +c direction and the 2–3

edge is assigned as wrapped in the�c direction to produce the

directed proto-graph and corresponding edge subset [Fig.

23(b)]. Unwrapping this graph generates the chain graph in

Fig. 23(c). Inspection of this edge subset shows that both edges

connected to vertices 1 and 4 are unwrapped in the +c direc-

tion and therefore are redundant, and this directed proto-

graph will not generate a new non-isomorphic chain graph.

Unwrapping the edges involving vertex 4 is redundant, and

when omitted, the remaining edge subsets are identical to

those in Fig. 22(d), and the chain graphs in Figs. 22(c), 22(e)

and 23(c) are isomorphic. Alternatively, we may omit

unwrapping the edges involving vertex 1 (instead of vertex 4)

to produce the edge subsets, adjacency matrix and the corre-

sponding directed proto-graph in Fig. 23(d). Unwrapping this

graph generates the chain graph in Fig. 23(e) which is

isomorphic with the chain graphs in Figs. 22(c), 22(e) and

23(c). If redundant unwrappings involving vertices 1 and 4

[Fig. 23(b)] are omitted, the remaining edge subset is identical

to that in Fig. 22(b). Thus, the edge combinations that corre-

spond to the edge subsets in Figs. 22(d), 23(b) and 23(d) need

not be considered as each will generate a chain graph

isomorphic with that in Fig. 22(c).

Consider the same proto-graph in Fig. 24(a). We may

choose an edge combination in which the 1–2, 1–3, 2–3 and 2–4

edges are assigned as wrapped in the +c direction and the 3–4

edge is assigned as wrapped in the�c direction to produce the

directed proto-graph and corresponding edge subset in Fig.

24(b). Unwrapping this graph generates the chain graph in Fig.

24(c). Inspection of this edge subset shows that all edges

involving vertices 1 and 3 are unwrapped in the +c direction,

and a new non-isomorphic chain graph is not generated. If we
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Figure 24
For vertex connectivity 2V2

3V2, (a) a proto-graph [identical to that shown
in Fig. 20(a)] and the corresponding vertex and edge subsets, (b) the
directed proto-graph in which the 1–2, 1–3, 2–3 and 2–4 edges are
assigned as wrapped in the +c direction and the 3–4 edge is assigned as
wrapped in the�c direction, its corresponding adjacency matrix and edge
subsets, and (c) the resultant chain graph. (d) The directed proto-graph
produced by omitting redundant unwrappings involving vertex 1 in (b),
its corresponding adjacency matrix and edge subsets, and (e) the resultant
chain graph. (f) The directed proto-graph produced by omitting
redundant unwrappings involving vertex 3 in (b), its corresponding
adjacency matrix and edge subsets, and (g) the resultant chain graph.
Note that the chain graphs in (c), (e) and (g) are isomorphic. Legend as in
Figs. 7 and 21.

Figure 23
For vertex connectivity 2V2

3V2, (a) a proto-graph [identical to that in Fig.
20(a)] and the corresponding vertex and edge subsets, (b) the directed
proto-graph in which the 1–2, 1–3, 2–4 and 3–4 edges are assigned as
wrapped in the +c direction and the 2–3 edge is assigned as wrapped in
the �c direction, and its corresponding adjacency matrix, and (c) the
resultant chain graph. (d) The directed proto-graph produced by omitting
redundant unwrappings involving vertex 1 in (b), and its corresponding
adjacency matrix and edge subsets, and (e) the resultant chain graph.
Note that the chain graph in (e) is isomorphic with the chain graph in (c).
Legend as in Figs. 7 and 21.



omit the unwrappings involving vertex 1, we produce the edge

subsets, adjacency matrix and directed proto-graph in Fig.

24(d). Unwrapping this graph generates the chain graph in Fig.

24(e) which is isomorphic with the chain graph in Fig. 24(c).

Alternatively, we may omit unwrappings involving vertex 3

(instead of vertex 1) to produce the edge subsets, adjacency

matrix and corresponding directed proto-graph in Fig. 24(f).

Unwrapping this graph generates the chain graph in Fig. 24(g)

which is isomorphic with the chain graphs in Figs. 24(c), 24(e).

The edge combinations that correspond to the edge subsets in

Figs. 24(b), 24(d) need not be considered for unwrapping as

they will generate chain graphs that are isomorphic with that

in Fig. 24(g) which has already been generated thus far in the

method as we begin by selecting edge combinations involving

1, 2, 3 edges and so on. The edges involving a specific vertex

cannot be unwrapped in the same direction if such a vertex is

linked to looped and/or multi-edges. It follows that if a row n

(or column n) in the adjacency matrix contains the matrix

elements 2, 21 and/or 22, all edges linked to vertex n cannot be

unwrapped in the same direction as the matrix elements 2 and

22 indicate unwrapping in both directions and the matrix

element 21 indicates one edge that is wrapped and one that is

not wrapped.

10.2. Unwrapping edges and redundant unwrappings:
vertices of degree 3 and 4

Consider the same proto-graph in Fig. 25(a). We may

choose an edge combination in which the 1–3 and 2–3 edges

are assigned as wrapped in the +c direction and the 2–4 edge is

assigned as wrapped in the �c direction to produce the

directed proto-graph and corresponding edge subsets in Fig.

25(b). Unwrapping this graph generates the chain graph in Fig.

25(c) and after untangling, we see that this chain graph

consists of two unconnected chain graphs [Fig. 25(d)]. Here,

two thirds of the edges involving vertex 3 are unwrapped in

the +c direction; omitting such unwrappings produces the edge

subsets, adjacency matrix and directed proto-graph in Fig.

25(e). However, unwrapping this graph generates the chain

graph in Fig. 25(f) which is non-isomorphic with that in Figs.

25(c), 25(d). Thus, unwrappings involved with a given vertex

can only be omitted if they are all unwrapped in the same

direction (as described in Section 10.1). The edge combination

in which the 2–4 edge is assigned as wrapped in the �c

direction and the 3–4 edge is assigned as wrapped in the +c

direction produces the directed proto-graph and corre-

sponding edge subset in Fig. 25(g). Unwrapping this graph

generates the chain graph in Fig. 25(h) and inspection of the

untangled version of this chain graph [Fig. 25(i)] shows that it

is isomorphic with that in Figs. 25(c), 25(d). Thus unwrapping

non-isomorphic directed proto-graphs may (or may not)

produce isomorphic chain graphs. This is the reason why this

generating method may produce duplicate chain graphs for a

given proto-graph. Note that predicting which directed proto-

graphs will result in isomorphic chain graphs before they are

unwrapped is not always possible but can be done for most

proto-graphs using the rules described in Appendix A.
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Figure 25
For vertex connectivity 2V2

3V2, (a) a proto-graph [identical to that in Fig.
20(a)] and the corresponding vertex and edge subsets, (b) the directed
proto-graph in which the 1–3 and 2–3 edges are assigned as wrapped in
the +c direction and the 2–4 edge in the �c direction, its corresponding
adjacency matrix and edge subsets, (c) the resultant chain graph, (d) an
untangled version of this chain graph. (e) The directed proto-graph
produced by omitting redundant unwrappings involving vertex 3 in (b),
its corresponding adjacency matrix and edge subsets, and (f) the resultant
chain graph which is non-isomorphic with the chain graph in (c). (g) The
directed proto-graph in which the 2–4 edge is assigned as wrapped in the
�c direction and the 3–4 edge is assigned as wrapped in the +c direction,
its corresponding adjacency matrix and edge subsets, (h) the resultant
chain graph, and (i) an untangled version of this chain graph. Note the
chain graphs in (h) and (i) are isomorphic with the chain graphs in (c) and
(d). Legend as in Figs. 7 and 21.



Consider the proto-graph in Fig. 26(a) in which one of the

two 2–3 edges is curved. Arrows are automatically assigned to

this edge to produce the edge subsets, adjacency matrix and

directed proto-graph in Fig. 26(b). Unwrapping this graph

generates the chain graph in Fig. 26(c). If the 1–2 edge of the

directed proto-graph in Fig. 26(b) is assigned as wrapped in

the �c direction, the directed proto-graph in Fig. 26(d) is

produced. Unwrapping this graph generates the chain graph in

Fig. 26(e) which is isomorphic with the chain graph in Fig.

26(c). In Fig. 26(d), two thirds of the edges (1–2, 3–2) involved

with vertex 2 are unwrapped in the same (+c) direction and

the third edge is not unwrapped. If we change the unwrapping

direction of the 1–2 edge from �c [Fig. 26(d)] to +c, the edge

subset, adjacency matrix and directed proto-graph in Fig. 26(f)

are produced. Unwrapping this graph generates the chain

graph in Fig. 26(g) which is non-isomorphic with that in Figs.

26(c), 26(e). Here, two thirds of the edges linked to vertex 2

are unwrapped in opposite directions. If the 1–3 edge of the

directed proto-graph in Fig. 26(f) is assigned as wrapped in the

+c direction, the edge subsets, adjacency matrix and directed

proto-graph in Fig. 26(h) are produced. Unwrapping this

graph generates the chain graph in Fig. 26(i) which is

isomorphic with that in Figs. 26(c), 26(e). Here, three quarters

of the edges linked to vertex 1 are unwrapped in the same (+c)

direction (a diagonal matrix element of 2 indicates unwrap-

ping in both directions) and the fourth 1–2 edge is unwrapped

in the �c direction; two thirds of the three edges linked to

vertex 3 are unwrapped in the same direction and the third

edge is not unwrapped.

10.3. D* vertices and redundant unwrappings

Based on the examples in Sections 10.1 and 10.2, we

conclude the following: if more than half the edges that link to

a particular vertex (of any degree) of a directed proto-graph

are unwrapped in the same direction and the other edges are

not unwrapped, a new non-isomorphic chain graph will not be

produced. We refer to such a vertex as a D* vertex. Thus, any

edge combination that gives rise to edge subset(s) with a D*

vertex need not be considered. Note that D* vertices are

possible only where the corresponding matrix row (and

column) contains only the matrix elements 1 and 21 with the

same sign (either all + or all �). Note also that edge combi-
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Figure 26
For vertex connectivity 3V2

4V1, (a) a proto-graph for the matrix-element
combination (4 � 1)(2 � 1)(2 � 21) and its vertex and edge subsets, (b)
the directed proto-graph in which the 2–3 edge is assigned as wrapped in
the +c direction, its corresponding adjacency matrix and edge subsets, and
(c) the resultant chain graph. (d) The directed proto-graph in which the
2–3 edge is assigned as wrapped in the +c direction and the 1–2 edge is
assigned as wrapped in the�c direction, and the corresponding adjacency
matrix and edge subsets, and (e) the resultant chain graph. (f) The
directed proto-graph in which the 2–3 and 1–2 edges are assigned as
wrapped in the +c direction, its corresponding adjacency matrix and edge
subsets, and (g) the resultant chain graph. (h) The directed proto-graph in
which the 2–3, 1–2 and 1–3 edges are assigned as wrapped in the +c
direction, its corresponding adjacency matrix and edge subsets, and (i) the
resultant chain graph. Note that the chain graphs in (e) and (i) are
isomorphic with the chain graph in (c) as the unwrappings involving
vertex 2 in (d) are redundant and the unwrappings involving vertex 1 in
(h) are redundant. Legend as in Figs. 7 and 21.

Figure 27
(a) A proto-graph and corresponding chain graph with vertex
connectivity 1V3

2V4
3V1

4V1 in which edges 3–5, 3–2, 3–7, 2–4, 5–6, 7–8
and 8–9 and vertices 2 to 9 form linear branches, and edge 1–1 and vertex
1 form the backbone chain. (b) A proto-graph and corresponding chain
graph with vertex connectivity 1V2

2V1
3V2

4V1 in which edges 3–2, 2–4, 2–5
and 5–6 and vertices 2, 4, 5 and 6 form linear branches and edges 1–1, 3–3
and 1–3 and vertices 1 and 3 form the backbone chain. (c) A proto-graph
and corresponding chain graph with vertex connectivity 2V2

3V4 in which
edges 3–2, 3–5, 2–5, 2–4, 5–6 and 4–6 and vertices 2 to 6 form polygonal
branches, and edges 1–1 and vertex 1 form the backbone chain. Legend as
in Fig. 7.



nations such as 1–3–, 1–2– and 1–3+, 1–2+ are redundant as

they generate isomorphic chain graphs (with the positive

direction of the translation axis reversed) and therefore only

one of such edge combinations needs to be considered.

10.4. Linear and polygonal branches

A branch is a set of vertices linked to the backbone chain of

a chain graph by a single edge. Chain graphs may contain two

types of branches: (i) linear branches and (ii) polygonal

branches. Linear branches do not contain polygons, and

polygonal branches do contain polygons. In Fig. 27(a), vertices

2 to 9 form a linear branch as they are connected to the

backbone chain (vertex 1) by one edge (1–3). In Fig. 27(b),

vertices 2, 4, 5 and 6 form a linear branch as they are

connected to the backbone chain (vertices 1 and 3) by one

edge (2–3). In Fig. 27(c), vertices 2, 3, 4, 5 and 6 form a

polygonal branch as they are connected to the backbone chain

(vertex 1) by one edge (1–3).

Identification of linear branches simplifies the generation of

chain graphs as unwrapping any edge (in either direction) of a

linear branch (of a directed proto-graph) will never result in a

new non-isomorphic chain graph. Consider the proto-graph

with vertex connectivity 1V2
2V1

3V2 in Fig. 28(a). Unwrapping

this graph generates the chain graph in Fig. 28(b) in which

vertices 2, 3, 4 and 5 form a linear branch connected to the

backbone chain by a single edge (1–2). Assigning any edge in

such a branch as wrapped will not generate a new non-

isomorphic chain graph. If the 3–5 edge is assigned as wrapped

in the +c direction, the directed proto-graph in Fig. 28(c) is

produced. Unwrapping this graph generates the chain graph in

Fig. 28(d) which is isomorphic with the chain graph in Fig.

28(b) as vertex 5 is a D* vertex. The directed proto-graph in

Fig. 28(e) is produced by assigning the 2–3 and 3–5 edges as

wrapped in the +c direction. Unwrapping this graph generates

the chain graph in Fig. 28(f) which is isomorphic with the chain

graph in Figs. 28(b) and 28(d). The directed proto-graph in Fig.

28(g) is produced by assigning the 1–2, 2–3 and 3–5 edges as

wrapped in the +c direction. Unwrapping this graph generates

the chain graph in Fig. 28(h) which is isomorphic with the

chain graph in Figs. 28(b), 28(d) and 28(f).

Unwrapping the directed proto-graph in Fig. 29(a) gener-

ates a chain graph that contains polygonal branches consisting

of three-membered rings [Fig. 29(b)]. In Fig. 29(c), the same

directed proto-graph is shown in which the 2–4 edge is

assigned as wrapped in the �c direction. Unwrapping this

graph generates the chain graph in Fig. 29(d) which is non-

isomorphic with the chain graph in Fig. 29(b).

Unwrapping any edge of a linear branch will produce a

chain graph isomorphic with the chain graph produced by

unwrapping the same directed proto-graph in which such an

edge is not unwrapped. This is the case irrespective of whether

the edge of the linear branch is connected to a D* vertex or

not. Therefore, any edge combination (and associated directed

proto-graphs) that involves edges of linear branches need not

be considered. If the edges of polygonal branches are

unwrapped, additional non-isomorphic chain graphs may be

generated and unlike linear branches, all unique combinations

of such edges must be unwrapped to ensure all non-

isomorphic chain graphs are generated.

Any proto-graph and adjacency matrix that contains only

the element ‘1’ [matrix-element combination (m1 � 1)] and

does not contain polygons cannot correspond to a chain and

may be omitted. Assigning the edges of such a proto-graph as

wrapped (in any combination and direction) and then

unwrapping such edges, will always produce the original

proto-graph and never a non-isomorphic cluster or chain. This

simplification is important as it can drastically reduce the time
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Figure 28
(a) A proto-graph with vertex connectivity 1V2

2V1
3V2 and its corre-

sponding adjacency matrix, and (b) the resultant chain graph in which
edges 1–2, 2–3, 3–4 and 3–5 and vertices 2 to 5 form linear branches
(indicated by the green ellipse). (c) A directed proto-graph in which the
3–5 edge is assigned as wrapped in the +c direction, its corresponding
adjacency matrix, and (d) the resultant chain graph. (e) The directed
proto-graph in which the 2–3 and 3–5 edges are assigned as wrapped in
the +c direction, the corresponding adjacency matrix, and (f) the resultant
chain graph. (g) The directed proto-graph in which the 1–2, 2–3 and 3–5
edges are assigned as wrapped in the +c direction, its corresponding
adjacency matrix, and (h) the resultant chain graph. Note how chain
graphs in (b), (d), (f) and (h) are isomorphic. Legend as in Fig. 7.

Figure 29
(a) A proto-graph with vertex connectivity 2V2

3V2, its corresponding
adjacency matrix, and (b) the resultant chain graph in which edges 2–3, 3–
4 and 2–4 and vertices 2, 3 and 4 form polygonal branches. (c) The
directed proto-graph in which the 2–4 edge is assigned as wrapped in the
�c direction, and (d) the resultant chain graph which does not contain
branches and is non-isomorphic with the chain graph in (b). Legend as in
Fig. 7.



spent generating non-isomorphic chain graphs from a given

proto-graph.

10.5. Deriving non-isomorphic chain graphs: 2V2
3V2

Thus far we have derived all valid matrix-element combi-

nations (Table 2), associated matrices (Fig. 12) and the

corresponding proto-graphs with vertex connectivity 2V2
3V2

(Fig. 13) and we have determined which of these element

combinations correspond to more than one distinct matrix and

non-isomorphic proto-graph. All unique combinations of

edges in each of the 18 non-isomorphic proto-graphs that do

not result in D* vertices can now be unwrapped to generate all

non-isomorphic chain graphs. For vertex connectivity 2V2
3V2,

we give an example of how this is done for the matrix-element

combination (10 � 1) in Appendix C (supporting informa-

tion). All other non-isomorphic chain graphs with vertex

connectivity 2V2
3V2 are generated (Appendix G, supporting

information) by assigning the edges of the other 17 proto-

graphs (Fig. 13) as wrapped in all unique combinations, and

then unwrapping the resultant directed proto-graphs. Note

that the matrix-element combination (10 � 1) is the most

complicated case for 2V2
3V2 as the number of non-isomorphic

directed proto-graphs (and the number of non-isomorphic

chain graphs generated) decreases as the number of 1’s in the

corresponding matrix-element combination decreases. This

happens as the number and direction of wrapped edges

associated with matrix elements 2, 21 and 22 are fixed and

therefore there are fewer edges that may be assigned as

wrapped in the +c or �c direction, and fewer potential non-

isomorphic directed proto-graphs and resultant chain graphs.

10.6. Generation of all possible non-isomorphic proto-graphs
and chain graphs

The general procedure for generating all possible non-

isomorphic chain graphs is summarized in Fig. 30. Non-

isomorphic proto-graphs were generated with MatLabR2019b

code that is listed in Appendix B (supporting information).

In Section 8, a rationale for setting a boundary limit of
P

r� 8

is provided. However, we do not generate all proto-graphs

and non-isomorphic chain graphs for all vertex connectivities

(cVr) for
P

r � 8 as the number of non-isomorphic chain

graphs increases exponentially with increasing e (number

of edges), which is higher for larger values of r and would

result in an impractically large number of chain graphs. For

some vertex connectivities, all non-isomorphic chain graphs

were generated for
P

r � 8 (e.g. 2V8), but for most vertex

connectivities, chain graphs were generated for
P

r � 4–6

as this results in a set of chain graphs of manageable size.

For every selected cVr, all valid matrix-element combinations

and their corresponding adjacency matrices are listed in

Appendix E (supporting information). All proto-graphs that

correspond to each adjacency matrix in Appendix E are

compiled in Appendix F (supporting information). In

Appendix C, we show how to generate all non-isomorphic

chain graphs with vertex connectivity 2V2
3V2 that correspond

to the matrix-element combination (10 � 1). All non-

isomorphic chain graphs generated using the method

described above are compiled in Appendix G (supporting

information). Clusters are included in Appendix G only if they

are non-isomorphic with the proto-graph (Appendix F) from

which they were generated. All possible clusters shown in

Appendices F and G correspond to a matrix-element combi-

nation composed entirely of 1’s as (SiO4)4– tetrahedra cannot

link to themselves (diagonal 2’s) or share edges with other

(SiO4)4� tetrahedra (off-diagonal 2’s). Appendix A is a list of

the rules for determining which cVr expressions and/or

directed proto-graphs may be omitted from consideration as

they will not produce additional non-isomorphic chain graphs.

Appendix D (supporting information) explains how Appen-

dices E, F and G (supporting information) are organized and

how to use them.
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Figure 31
Range of TOn for chain and sheet silicates. Yellow boxes show the range
that is topologically possible for one- and two-dimensional polymeriza-
tions of tetrahedra, and the green boxes show the compositional ranges
observed in chain- and sheet-silicate minerals. Modified from Day &
Hawthorne (2020).

Figure 30
A flow chart of the overall method to derive all non-isomorphic chain
graphs from the complete set of possible vertex connectivities
1Vr1

2Vr2
3Vr3

4Vr4. Green boxes denote actions and yellow boxes denote
the products.
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Table 3
Rules for determining which cVr expressions and/or directed proto-graphs will not produce additional non-isomorphic chain graphs.

For rules [2] and [6], vertices and edges of a single repeat unit are shown in yellow and green, respectively.

Rule or property Examples

[1] Any graph (cVr) with an
odd number of vertices of
odd degree is not possible.
Any cVr where eA is odd can
be ignored

A 1V2
2V2

3V1 graph is not possible as eA = 9

[2] Any two isomorphic
directed proto-graphs in
which the direction of each
isomorphic wrapped edge is
opposite will generate
isomorphic chain graphs in
which the translation axis is
reversed. Only one of such
directed proto-graphs needs
to be considered

Two isomorphic 2V2
3V2 directed proto-graphs in which all

equivalent edges are wrapped in opposite directions: the
resultant chain graphs are isomorphic

[3] D* vertices: if all edges
connected to a vertex are
wrapped in the same
direction, that vertex is a D*
vertex. Unwrapping a
directed proto-graph with a
D* vertex will not produce a
new non-isomorphic chain
graph. Unwrapping any edge
linked to a vertex of
degree 1 will never result
in a new, non-isomorphic
chain graph

Vertex 1 is a D* vertex.
Assigning the edge of a 1-

connected vertex as wrapped
is not necessary as it will

result in a D* vertex

Vertex 1 is a D* vertex

[4] D* vertices of degree 3:
if a vertex of degree 3 has
two edges that are wrapped
in the same direction and a
third edge that is not
wrapped, this vertex is a D*
vertex and the directed proto-
graph will not form a new
non-isomorphic chain graph
once unwrapped

Vertex 3 is a D* vertex

[5] D* vertices of degree 4:
if a vertex of degree 4
has three edges that are wrapped
in the same direction and a
fourth edge that is not
wrapped, this vertex is a D*
vertex and the directed proto-
graph will not form a new
non-isomorphic chain graph
once unwrapped

Vertex 1 is a D* vertex



11. Discussion

One often reads in the literature (and in reviews of submitted

manuscripts) that one should ‘compare observed structures

with other possible structural arrangements’, as if there are

only one or two other possible structural arrangements of the

same (or similar) stoichiometry. We have shown here that

there is generally a large number of topologically possible

structural arrangements for specific stoichiometries. Indeed,

Day & Hawthorne (2020) showed that there are �50 non-

isomorphic chain arrangements of silicate tetrahedra observed

in the �450 chain-silicate minerals, four of which occur in

�375 chain silicates and �46 of which occur in �75 chain

silicates. Comparison of these numbers with the numbers of

topologically possible chains of even modest stoichiometry

suggests that most chain graphs (listed in Appendix G for TOn

stoichiometries of n � 8) do not occur in minerals or synthetic

compounds. Fig. 31 shows the distribution of possible ranges in

TOn for one- and two-dimensional silicate polymerizations

(yellow boxes) and the ranges in TOn observed in minerals

(Day & Hawthorne, 2020). It is apparent from Fig. 31 that the

chemical compositions of atomic arrangements are controlled

(at least in part) by the bond topological characteristics of

their arrangements, and that the generation of all possible

non-isomorphic chain graphs provides the opportunity to (i)

‘compare observed structures with other possible structural

arrangements’, and (ii) examine why some stoichiometries for

chain (and sheet) arrangements are topologically possible but

not observed in crystal structures.

In Part II of this work, we will examine in detail the factors

affecting (i) the occurrence or non-occurrence of specific chain

topologies in crystal structures; (ii) the occurrence of some

chain topologies in a wide range of crystal structure arrange-

ments and other chain topologies in only one or two struc-

tures; and (iii) the occurrence of specific chain topologies in

abundant minerals versus the occurrence of other topologies

only in rare minerals. Moreover, as n in TOn can be calculated

directly from any cVr, one can generate all non-isomorphic

chain graphs for any particular chain stoichiometry, explicitly

allowing comparison of observed structures with other

possible structural arrangements of the same (or related)

stoichiometry, and also allowing the prediction of possible

structures for specific chemical compositions.

APPENDIX A
Rules for determining which cVr expressions and/or
directed proto-graphs will not produce additional non-
isomorphic chain graphs

The details of the rules are provided in the form of Table 3.
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