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Multidimensional color codes for chair tilings

Shelomo Izhaq Ben-Abrahama* and Dvir Flomb

aDepartment of Physics, Ben-Gurion University of the Negev, Beersheba, Israel, and bDepartment of Computer Science,

Ben-Gurion University of the Negev, Beersheba, Israel. *Correspondence e-mail: shelomo.benabraham@gmail.com

Ordered aperiodic structures have been of interest to the crystallographic

community for several decades, and study of them has in turn led to the study of

lattice substitution systems, model sets and chair tilings. In this work a color code

for chair tilings in arbitrary dimensions is presented. In two and three

dimensions, it is expedient to translate the digital codes into colors. An explicit

example of a three-dimensional color coding covering one octant is constructed.

The tiling is then extended to the whole three-dimensional space and an

indication is given of how to do this in arbitrary dimensions. Illustrations of some

four-dimensional objects are also shown. The principle of color coding can be

applied to other complex tilings such as brick tiling.

1. Introduction

The interest of the crystallographic community in ordered

aperiodic structures was aroused by two significant innova-

tions, the introduction of the superspace group approach for

dealing with modulated structures by Janner & Janssen (1977,

1980) and, mainly, the discovery of quasicrystals (short for

quasiperiodic crystals) by Shechtman et al. (1984).

The work reported in this paper is part of a project gener-

alizing one-dimensional sequences and two-dimensional

structures to higher dimensions (Ben-Abraham & Quandt,

2011; Ben-Abraham et al., 2013, 2014; Lee et al., 2016). A

preliminary short report on the present subject was published

in the Proceedings of ICQ 13 (Flom & Ben-Abraham, 2017).

Lee & Moody (2001) studied lattice substitution systems

and model sets and, among other things, generalized the chair

tiling in principle to arbitrary dimensions. They also proved

for chair tilings in all dimensions that, if each chair is marked

with a single scattering point in a consistent way, for instance

at the inner corner, then the set of points from the chairs of

any one kind (orientation) is a model set and hence a pure-

point (Bragg) diffraction set. Consequently, the diffraction

spectrum of the entire tiling is pure point since it is a union of

all partial spectra.

Robinson put forward a four-color code for the two-

dimensional chair tiling. Here we generalize this code to

arbitrary dimensions. We call the result Color Code for Chair

Tiling (CCCT in what follows). Incidentally, statements about

d dimensions are valid even in zero and one dimension, but

these cases are extremely degenerate so they are of no

interest. We explicitly elaborate the three-dimensional case.

The two-dimensional chair tiling (sometimes also called the

L-tiling) is well known. A thorough discussion can be found in

the paper by Robinson (1999), and see also Baake & Grimm

(2013).

Solomyak (1997) studied the dynamics of self-similar tilings

and, among others, proved that the chair tiling is pure-point

diffractive. Robinson followed this with a thorough discussion
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of the two-dimensional chair tiling and put forward a four-

color substitution tiling which codes for the two-dimensional

chair tiling. A reader seriously interested in the mathematical

background of the subject is advised to read these three

seminal treatises. For what is to follow, we advise the reader

who is not familiar with projections from higher-dimensional

spaces to read Flatland by Abbott (1884) and consult Wiki-

pedia on the subject (https://en.wikipedia.org/wiki/Four-

dimensional_space), where numerous relevant items are

presented.

2. Preliminaries

In order to consider a d-dimensional chair tiling it is worth-

while starting with a basic configuration: a d-dimensional cube

(in what follows Qd , or simply Q when there can be no

confusion) with edge length of two units and composed of 2d

unit cubes qd , or simply q when there can be no confusion.

Figs. 1 and 2 show this for two and three dimensions, respec-

tively. If necessary, we shall also denote by q(c) a q of color c.

A d-dimensional chair Cd (or simply C when there can be no

confusion) is a Qd with one q removed. Fig. 3 shows this for

three dimensions.

A chair is a rep-tile. That is to say, it can be tiled by smaller

copies of itself ad infinitum. By the same token, it induces by

inflation an infinite substitution tiling.

The original way of constructing the two-dimensional chair

tiling is by inflation, and this is shown in Fig. 4.

The conventional way to label the q’s is by arrows along one

of the body diagonals, with the arrows pointing towards the

center of the respective Q; this is shown in Fig. 5 for two

dimensions. It is, however, convenient and expedient to

translate the arrow labeling into an alphabet Ad of 2d letters/

digits/colors. In what follows we shall usually refer to them

simply as colors. The assignment of arrows, number codes and

colors for two dimensions is shown in Table 1.

To make this paper self-contained, and also for comparison

with the construction of the two-dimensional chair tiling by

inflation, we recall Robinson’s labeling by a color code and

construction by substitution. The substitution is shown in

Fig. 6, which also displays the two-dimensional proto-chairs

(shown by thick lines) and their cyclic color change. Yet there

is a caveat: the orientation of the chairs depends on the sector.

360 Ben-Abraham and Flom � Color codes for chair tilings Acta Cryst. (2022). A78, 359–363

research papers

Figure 1
The two-dimensional basic configuration Q2.

Figure 2
The three-dimensional basic configuration Q3. (a) 0 (yellow) first, (b) 7
(violet) first.

Figure 3
The three-dimensional chair C3 with the missing cube q3 beside it.

Figure 4
The two-dimensional chair tiling prototile and its inflation.

Figure 5
Two-dimensional labeling of unit squares q2 by arrows.

Figure 6
Two-dimensional chair code tiling substitution. Two-dimensional proto-
chairs are drawn (shown by thick lines) and their cyclic color change is
demonstrated.



What is shown is valid in the upper right quadrant [1 1]. In the

lower left quadrant all chairs will be reflected (flipped) around

the diagonal of unequal squares. Incidentally, we remark that

while the generally accepted way of labeling the colors is by

the digits 0, 1, 2, 3, Robinson originally denoted them p, q, r, s,

respectively. Generations 0 to 3 of the tiling are shown in Fig. 7,

where the resulting two-dimensional chairs and their inflation

are also explicitly shown. We observe that the block substi-

tuting for q(c) is always a Q2 , with the q diametrically opposite

to q(c) replaced by q(c) itself.

3. Multidimensional color codes

For completeness, as well as for comparison with the

construction by CCCT substitution, we start by showing the

basics of the three-dimensional inflation (Fig. 8). An exploded

view of the inflation is shown in Fig. 9.

The assignment of arrows, number codes and colors for

three dimensions is shown in Table 2. The convention for three

dimensions is as follows. The number codes of diametrically

opposite q3’s are of opposite parity and sum to 7. This rule

immediately generalizes to any dimension except 2. In higher

dimensions the coding by actual colors becomes impractical.

Thus, it would be probably rather hard to find 2d sufficiently

different hues for d � 4. We observe that, within a Qd in any

dimension, the parity of the nearest neighbors of a given qd is

opposite to that of qd . In any even dimension (such as two

dimensions) the substitution upholds this rule. On the other

hand, in any odd dimension (such as three dimensions) the

substitution violates this rule, since the initial q replaces its

diametrical counterpart even though their parities are oppo-

site.

In any dimension d, the symmetry of the entire structure is

that of a d-dimensional cube colored by 2d colors. It is easy to

see that the symmetry of Qd propagates throughout the whole

structure in all generations. Thus, in two dimensions, the point

symmetry group is 40m0, and in three dimensions the point

symmetry group is m030m0, where the prime indicates a change

of color.

The starting q stays invariant throughout the main body

diagonal which is the propagation direction of the structure.
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Table 2
Labeling of unit cubes q3(c) for three dimensions.

Number
code Arrow Color

0 ½1 1 1� Yellow

1 ½1 1 1� Green

2 ½1 1 1� Orange

3 ½1 1 1� Turquoise

4 ½1 1 1� Red

5 ½1 1 1� Blue

6 ½1 1 1� Purple

7 ½1 1 1� Violet

Table 1
Labeling of unit cubes q2(c) for two dimensions.

Number
code Arrow Color

0 ½1 1� Yellow

1 ½1 1� Green

2 ½1 1� Orange

3 ½1 1� Turquoise

Figure 7
Two-dimensional CCCT. Generations 0, 1, 2, 3 are given, starting with 0,
showing color-coded two-dimensional chairs.

Figure 8
Three-dimensional chair code tiling substitution.

Figure 9
An exploded view of three-dimensional chair inflation.



Consequently, its corresponding chair also propagates with it

diagonally. Thus, for instance, in three dimensions starting

with 0, all q’s in the main diagonal are 0’s (yellow) and stay

surrounded by the remaining six q’s of the respective chair.

The two-dimensional code tiling substitution generalizes to

arbitrary dimensions. A two-dimensional representation of Q3

is shown in Fig. 10; this is required for construction of the

three-dimensional case. For three dimensions we show the

substitution explicitly in Fig. 11. Generations 0, 1, 2 of the

three-dimensional CCCT starting with 0 are shown in Fig. 12.

4. Tiling the whole space

What has been said up to now refers to tilings that cover one

sector (quadrant, octant etc.). In order to extend the tiling to

the whole d-dimensional structure, one must start by seeding

the basic configuration Qd and continue therefrom. For two

dimensions this is shown in Fig. 13. A large two-dimensional

picture can also be found in the book by Baake & Grimm

(2013) even though it is in a quite different context. The

diligent reader is invited to do that for three dimensions and/

or look at the supporting information, which shows the sixteen

16 � 16 matrices of the third generation of the three-

dimensional CCCT. Here we focus on three dimensions.

Projections of the hull of the second generation of three-

dimensional CCCT are shown in Fig. 14.

5. Four dimensions

In principle, there is no problem extending the construction

to any dimension, but the requirements on space grow

exponentially. Therefore, we limit ourselves to presenting only

some basics. As has already been said, it is practically

impossible to find 16 distinguishable hues. Therefore, to

represent the four-dimensional version with colors we choose

to assign the same color to diametrically opposite q4’s.
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Figure 10
A two-dimensional graphic representation of the three-dimensional basic
configuration Q3.

Figure 11
Three-dimensional chair code tiling substitution. Two-dimensional proto-
chairs are drawn (shown by thick lines) and their cyclic color change is
demonstrated.

Figure 12
Three-dimensional CCCT, showing generations 0, 1, 2, starting with 0.

Figure 13
Two-dimensional CCCT: third generation starting with seeded Q2 (shown
in the central frame by a thick-lined contour).

Figure 14
Projections of the hull of the three-dimensional second generation. (a)
Starting vertex first, (b) the diametrical vertex first.



Displaying the whole four-dimensional inflation would take

too much space, so we show in Fig. 15 only the inflation

starting with 0 (yellow).

A two-dimensional projection of the four-dimensional

colored basic configuration Q4 is shown in Fig. 16. A two-

dimensional projection of the four-dimensional colored chair

C4 is shown in Fig. 17. Finally, Fig. 18 shows a two-dimensional

projection of part of the hull of the second generation of the

four-dimensional CCCT. We remark that the isometric (short

for isogonal axonometric) three-dimensional projection of a

4-cube is a rhombic dodecahedron and that, in turn, projects

to two dimensions as a regular octagon partitioned as shown in

the figure.

6. Conclusions

We have constructed a coding substitution tiling of chair tilings

in arbitrary dimensions. In two and three dimensions, it is

expedient to translate the digital codes into colors. We have

constructed an explicit example of a three-dimensional color

coding covering one octant. We have then extended the tiling

to the whole three-dimensional space and indicated how to do

this in arbitrary dimensions. We have also shown illustrations

of some four-dimensional objects. The principle of color

coding can be applied to other complex tilings such as the

brick tiling.
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Figure 15
Four-dimensional CCCT: part of inflation starting with 0 (yellow).

Figure 16
A two-dimensional projection of the four-dimensional colored basic
configuration Q4.

Figure 17
A two-dimensional projection of the four-dimensional chair C4.

Figure 18
A two-dimensional projection of part of the hull of the second generation
of the four-dimensional CCCT.
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