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Calculating dynamical diffraction patterns for X-ray diffraction imaging

techniques requires numerical integration of the Takagi–Taupin equations. This

is usually performed with a simple, second-order finite difference scheme on a

sheared computational grid in which two of the axes are aligned with the

wavevectors of the incident and scattered beams. This dictates, especially at low

scattering angles, an oblique grid of uneven step sizes. Here a finite difference

scheme is presented that carries out this integration in slab-shaped samples on

an arbitrary orthogonal grid by implicitly utilizing Fourier interpolation. The

scheme achieves the expected second-order convergence and a similar error to

the traditional approach for similarly dense grids.

1. Introduction

Simulations based on the propagation of coherent wavefronts

are becoming an increasingly common tool for the develop-

ment of X-ray diffraction imaging techniques, where they are

regularly used to evaluate the viability of new methods

(Pedersen et al., 2018; Holstad et al., 2022) and to investigate

the effect of experimental errors (Shabalin et al., 2017; Carnis

et al., 2019). Furthermore, by accurately predicting coherent

interference, such simulation methods are particularly rele-

vant given the recent arrival of highly coherent X-ray

sources, such as fourth-generation synchrotrons and free-

electron lasers.

When simulating the propagation of coherent wavefronts

through large and near-perfect single crystals, multiple scat-

tering effects (i.e. dynamical diffraction) become important.

One often tries to avoid these dynamical effects [even if

occasionally they are the subject of interest (Rodriguez-

Fernandez et al., 2021)] by using highly deformed samples,

small grains or relying on the ‘weak beam approximation’, i.e.

measuring at the tails of the rocking curve (Shabalin et al.,

2017; Holstad et al., 2022). However, in many cases dynamical

effects are unavoidable and must be accounted for in the

simulation framework by solving the Takagi–Taupin equations

(TTEs): a set of coupled, first-order PDEs (partial differential

equations) that, in general, must be integrated numerically

(Takagi, 1962; Taupin, 1967). When numerically integrating

the TTEs (in the two-beam case), it is natural to choose a

computational grid with two of its axes aligned with the

wavevector of the incident and scattered waves (Taupin, 1967;

Authier et al., 1968). With this approach, the TTEs have

previously been solved via finite difference integration on a

structured grid of constant (Authier et al., 1968) or varying

(Epelboin, 1981) step sizes, or by iterative approaches

(Bremer, 1984; Yan & Li, 2014). However, the use of sheared
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grids may complicate matters by requiring the use of a

connecting interpolation step when the scattering calculation

is combined with other numerical methods, for example to

generate input for the incident wavefront, to generate the

input for the deformed crystal structure, or when the calcu-

lated diffraction patterns are further input into simulations of

the downstream optics. Approaches using different coordinate

systems have typically involved the use of symmetric scat-

tering geometries in which the sheared coordinate system

coincides with a rectangular one (Kolosov & Punegov, 2005;

Osterhoff, 2012), or a finite element approach that can solve

the TTEs on an unstructured grid (Honkanen et al., 2018).

These approaches, however, are either geometrically restric-

tive or require third-party software.

Ideally, one should be able to straightforwardly integrate

the TTEs on an orthogonal grid that requires no intermediate

interpolation step. In the kinematical case (i.e. not incorpor-

ating multiple scattering), Li et al. (2020) described a method

for carrying out scattering simulations on an orthogonal grid

that implicitly uses Fourier interpolation to avoid making

cumulative interpolation errors that would otherwise cause

such a calculation to fail. Inspired by this approach, we here

describe how implicit Fourier interpolation can also be utilized

to integrate the dynamical TTEs on an orthogonal grid. Our

approach is based on exponential Rosenbrock-type methods

(Hochbruck & Ostermann, 2010) for the numerical integra-

tion, and yields a a result similar to the mixed real-space/

reciprocal-space methods called ‘multistep methods’ regularly

used to model a wide range of optical scenarios (Li et al., 2017;

Hare & Morrison, 1994). The method we present is applicable

for slab-shaped samples (two parallel surfaces and infinite

extent in the orthogonal directions) in Laue geometry, making

it ideal for simulating X-ray diffraction images from lightly

deformed (i.e. strained) materials.

2. The Takagi–Taupin equations

The most general framework for treating dynamical diffrac-

tion from strained crystals involves the TTE (Takagi, 1962,

1969; Taupin, 1967) which, for the two-beam case, are

2iðk0 � rÞE0ðrÞ ¼ k2 �0E0ðrÞ þ �
0

h
ðrÞEhðrÞ

� �
2iðkh � rÞEhðrÞ ¼ k2 ð�0 þ �ÞEhðrÞ þ �

0
hðrÞE0ðrÞ

� �
; ð1Þ

where E0 and Eh are the complex envelopes of the mono-

chromatic fields of the incident and scattered beams, respec-

tively, k0 and kh ¼ k0 þQ are the vacuum wavevectors of the

incident and scattered beams, respectively,1 and Q is the

scattering vector. �0 is the average electric susceptibility of the

crystal, while �0h and �0
h

are the spatially varying Fourier

components of the electric susceptibility corresponding to the

scattering vectors Q and �Q, respectively, given by

�0hðrÞ ¼ exp iQ � uðrÞ½ ��h;

�0
h
ðrÞ ¼ exp �iQ � uðrÞ½ ��h; ð2Þ

where uðrÞ is the displacement field of the crystal. These

susceptibility terms are related to the form factors Fh and Fh

through

�h ¼ �
4�r0

k2Vu:c:

� �
Fh;

�h ¼ �
4�r0

k2Vu:c:

� �
Fh; ð3Þ

where r0 is the classical electron radius and Vu:c: is the volume

of the crystal unit cell. Finally, � ¼ ðjkhj
2
� k2Þ=k2 is a measure

of the deviation away from the exact Bragg condition, where k

is the magnitude of k0. If we consider only a right-handed

‘rocking’ rotation around an axis parallel to Q� k0 (‘�’

denotes the cross-product) by an angle �, we can write

� ¼ 2 sinð2�Þ�, where � ¼ 0 corresponds to the exact satis-

faction of the Bragg condition. Rotation of the crystal can

also be simulated by the addition of a rotational component

to the displacement field (e.g. Shabalin et al., 2017). This

alternative approach is also compatible with the method

presented here.

If we ignore the scattering terms, the equations (1) are a

pair of convection equations whose solution involves the

interpolation of the initial condition through the integration

volume. Since direct application of a finite difference scheme

in a Cartesian coordinate system is equivalent to linear

interpolation and would accumulate errors at each step, the

traditional approach is to solve the equations in an oblique

coordinate system with the axes aligned with the incident and

scattered wavevectors. In this way, the interpolation from slice

to slice in the computational grid becomes a simple shifting of

array elements. Though simple and elegant, the use of such

oblique coordinate systems requires additional interpolation

steps when the scattering simulation interfaces with material

models or other optical simulation steps that require ortho-

gonal grids. The approach we describe here utilizes an

orthogonal grid, but avoids cumulative interpolation errors by

re-stating the problem in reciprocal space and utilizing Fourier

interpolation implicitly.

3. Rewriting the TTEs in terms of transverse Fourier
transforms

We wish to arrive at a mixed real-/reciprocal-space solution

to the TTEs. To achieve this, we first state the TTEs in

an orthogonal coordinate system, then Fourier transform

the resulting differential equations along the transverse

coordinates.

We define an orthogonal grid with the three orthonormal

unit vectors x̂x, ŷy and ẑz. The only restriction on the choice of

coordinate system is that

k0 � ẑz> 0 and kh � ẑz> 0; ð4Þ
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1 The choice of k0 is arbitrary, but leads to different versions of the TTEs; the
other common choice is for k0 to be the wavevector of the refracted wave
inside the crystal.



such that the z axis takes the role of a quasi-optical axis and we

can treat z as the dynamical variable and x and y as transverse

variables. To this end, we decompose the vectors k0 and kh into

their z components and their projection onto the x–y plane, i.e.

k0 ¼ k0;zẑzþ k0;? and kh ¼ kh;zẑzþ kh;?, where k0;z; kh;z refer

to the z components of the respective vectors. We can now

rewrite equations (1) as

2k0;z

@

@z
E0ðrÞ ¼ �ik2�0E0ðrÞ � 2ðk0;? � r?ÞE0ðrÞ

� ik2�0
h
ðrÞEhðrÞ;

2kh;z

@

@z
EhðrÞ ¼ �ik2ð�0 þ �ÞEhðrÞ � 2ðkh;? � r?ÞEhðrÞ

� ik2�0hðrÞE0ðrÞ; ð5Þ

where r? ¼ ½@=@x; @=@y; 0�. We now introduce the transverse

Fourier transform:

F?fEðx; y; zÞg ¼
R R

Eðx; y; zÞ exp½�i2�ðxqx þ yqyÞ� dx dy;

ð6Þ

which is inverted by the inverse Fourier transform, appro-

priately defined as

F
�1
? f

~EEðqx; qy; zÞg ¼
R R

~EEðqx; qy; zÞ exp½i2�ðxqx þ yqyÞ� dx dy:

ð7Þ

Tildes are used to denote the transforms of functions,

namely ~EE0ðqx; qy; zÞ = F?f ~EE0ðx; y; zÞg and ~EEhðqx; qy; zÞ =

F?f
~EEhðx; y; zÞg.

With this definition, we Fourier transform the equations (5):

@

@z
~EE0ðqx; qy; zÞ ¼

�ik2

2k0;z

�0 �
i2�

k0;z

q � k0;?

� �
~EE0ðqx; qy; zÞ

�
ik2

2k0;z

F?f�
0

h
ðx; y; zÞEhðx; y; zÞg;

@

@z
~EEhðqx; qy; zÞ ¼

�ik2

2kh;z

ð�0 þ �Þ �
i2�

kh;z

q � k0;?

� �
~EEhðqx; qy; zÞ

�
ik2

2kh;z

F?f�
0
hðx; y; zÞE0ðx; y; zÞg; ð8Þ

where q ¼ ½qx; qy; 0�. Here we have assumed that �0 is

constant throughout the simulated volume, which limits this

approach to slab-shaped crystals. We introduce the angles �0

and �h given by k0 � ẑz = jk0j cosð�0Þ and kh � ẑz = jkhj cosð�hÞ to

give

@

@z
~EE0ðqx; qy; zÞ ¼

�ik

2 cosð�0Þ
�0 �

i2�

cosð�0Þ
q0;?

� �
~EE0ðqx; qy; zÞ

�
ik

2 cosð�0Þ
F?f�

0

h
ðx; y; zÞEhðx; y; zÞg;

@

@z
~EEhðqx; qy; zÞ ¼

�ik

2 cosð�hÞ
�0 �

i2�

cosð�hÞ
qh;?

� �
~EEhðqx; qy; zÞ

�
ik

2 cosð�hÞ
F?f�

0
hðx; y; zÞE0ðx; y; zÞg ð9Þ

where q0;? ¼ q � k0;?=k and qh;? ¼ q � kh;?=k.

In cases where �0h is constant or depends only on z, the

equations can be solved analytically with Green’s function

methods. In the general case where �0h varies as a function of

all coordinates, the scattering term F?f�
0

h
ðx; y; zÞEhðx; y; zÞg

cannot be simplified and finite difference methods must be

used.

We note that in cases when both k0 and kh lie within the x–z

plane, the 2D Fourier transforms may be replaced by 1D

Fourier transforms along the x direction.

4. Discretization and numerical evaluation

We introduce a computational grid with axes parallel to those

in the coordinate system defined above. It has step sizes dx, dy

and dz, and number of points Nx, Ny and Nz in each dimension.

The thickness of the slab-shaped crystal is t ¼ dzðNz � 1Þ and

the simulated volume has side lengths Lx ¼ dxðNx � 1Þ and

Ly ¼ dyðNy � 1Þ in the transverse directions. A point on the

grid P ¼ ðixdx; iydy; izdzÞ is then indexed by the numbers ix, iy,

iz where iz = 0, 1, 2 . . . Nz � 1.

In order to utilize discrete Fourier transform methods when

solving these equations on a finite grid, we impose zero

Dirichlet boundary conditions in the two transverse dimen-

sions, x and y:

E0ð0; y; zÞ ¼ E0ðLx; y; zÞ ¼ Ehð0; y; zÞ ¼ EhðLx; y; zÞ ¼ 0;

E0ðx; 0; zÞ ¼ E0ðx;Ly; zÞ ¼ Ehðx; 0; zÞ ¼ Ehðx;Ly; zÞ ¼ 0:

ð10Þ

These boundary conditions require that the sample grid be

large enough to fit the Borrmann triangle extending from
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Figure 1
Scattering geometry inside the sample volume and the finite support of
the initial condition.



every point where the initial condition is non-zero. If the

initial condition is only non-zero on a domain � on the surface

(i.e. at z ¼ 0), the direct projection of this domain along the

directions of k0 and kh must lie within the sample grid (see Fig

1). This condition is fulfilled if the domain � is fully contained

in the rectangle defined by

maxð0; tk0x=k; tkhx=kÞ< x

< minðLx;Lx þ tk0x=k;Lx þ tkhx=kÞ; ð11Þ

maxð0; tk0x=k; tkhx=kÞ< y< minðLy;Ly þ tk0y=k;Ly þ tkhy=kÞ

ð12Þ

which can always be made true for a finitely bounded initial

condition if the computational grid is sufficiently large.

As we are using discrete Fourier transforms we also specify

a grid in (qx; qy) space, which is related to the (x–y) grid in real

space. In full period frequency, this corresponds to the points

qx ¼ �
1

2dx

;�
1

2dx

þ
1

Lx

;�
1

2dx

þ
2

Lx

. . . ; 0; . . . ;
1

2dx

�
1

Lx

� �
;

qy ¼ �
1

2dy

;�
1

2dy

þ
1

Ly

;�
1

2dy

þ
2

Ly

. . . ; 0; . . . ;
1

2dy

�
1

Ly

� �
;

ð13Þ

where the inclusion of the negative Nyquist frequency is

specific to even numbers for Nx and Ny.

The complex envelope of the incident beam should be given

for the entrance surface of the grid [i.e. E0ðdxix; dyiy; 0Þ] and

the components transformed using a discrete Fourier trans-

form (DFT) to give the initial condition in reciprocal space

where the amplitude of the scattered beam is zero at the

entrance surface, i.e. ~EEhðqx; qy; 0Þ ¼ 0. This initial condition is

constructed by appending the components of these two arrays

into a single vector: Eð0Þ.

We can rewrite the equations (9) to the form used by

exponential Runge–Kutta methods: ð@=@zÞEðzÞ = AEðzÞ +

B½z;EðzÞ�, where A is a diagonal matrix containing the coef-

ficients in the square brackets of equation (9) evaluated at the

reciprocal-space grid defined by equation (13) and B contains

the convolution terms, i.e. the last terms of equations (9). The

function is implemented by applying an inverse DFT on E,

multiplying by the scattering coefficients, that must be given

on the real-space grid at the slice z, and transforming back to

reciprocal space:

Bðz;EÞ ¼

"
�

ik

2 cosð�0Þ
DFT DFT�1

f ~EEhg�
0

h
ðx; y; zÞ

� 	

�
ik

2 cosð�hÞ
DFT DFT�1f ~EE0g�

0
hðx; y; zÞ

� 	#
: ð14Þ

5. Exponential Runge methods and convergence
behaviour

The Fourier-transformed TTEs can be solved by exponential

Runge–Kutta methods of the type given by Hochbruck &

Ostermann (2010). To test the convergence of this approach,

we utilized two different exponential integrators. The first is an

archetypal exponential integrator based on the explicit Euler

scheme, given by

Eðzþ hÞ ¼ expðhAÞEðzÞ þ hðhAÞ
�1
½expðhAÞ � 1�B z;EðzÞ½ �:

ð15Þ

The second exponential integrator is an explicit second-order

method based on Heun’s method, given by the steps (Friedli,

1978)

E�1 ¼ EðzÞ;

b1 ¼ Bðzn;E�1Þ;

E�2 ¼ �0E�1 þ h�1b1;

b2 ¼ Bðzn þ h;E�2Þ;

Eðzþ hÞ ¼ �0E�1 þ
h

2
½ð2�1 � �2Þb1 þ �2b2�; ð16Þ

where the � functions are given by �0 ¼ expðhAÞ and

�n ¼ nðhAÞ
�1
ð�n�1 � 1Þ, and expðhAÞ is in general the matrix-

exponential which here is equal to the element-wise expo-

nential because A is diagonal. We choose this scheme based on

Heun’s method because it only evaluates the B function on the

same regular intervals where the field is calculated, and
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Figure 2
Plots of the sample and calculated fields used in the second convergence
test. (a) Displacement field in units of the lattice constant, a. (b)
Transmitted field on a logarithmic scale. (c) Scattered field on a
logarithmic scale. The calculated fields are for the case � ¼ 0.



therefore only requires the value of the scattering function on

the same grid where the fields are evaluated.

For comparison with existing methods, we also imple-

mented a normal finite difference method based on a recent

publication by Shabalin et al. (2017) using the half-step finite

difference for the derivatives. A derivation of this method is

given in Appendix A.

To evaluate the convergence behaviour of these exponen-

tial methods, we generated a virtual sample consisting of a

perfect single crystal with a single edge dislocation with

Burger’s vector (100) close to the path of the direct beam.

Plots of the displacement field as well as the amplitudes of the

converged solution are shown in Fig. 2.

The fields are simulated under low absorption and highly

dynamical conditions, and we simulated only a single slice in

the y direction with the dimensions 50 � 115 mm at a point

1 mm from the dislocation core. The incident beam is a narrow

Gaussian of width � = 0.2 mm, with parameters chosen

corresponding to the (111) reflection of a diamond crystal with

a molybdenum source, given as: �0 = 7:6� 10�6 � 1:4i� 10�9,

�h ¼ 5:0� 10�6 � 0:7i� 10�9 and �h ¼ �h, where i is the

imaginary unit. We set k = 8.85 Å�1 and 2� = 20�. The incident

beam has a Gaussian envelope with width �x = 0.2 mm.

In order to accommodate the comparison with existing

methods, we utilized a grid with step sizes �z ¼ h and

�x ¼ 2 tanð�Þh for the exponential methods and a grid with

the same density of points for the normal finite difference

method. Then, to check the convergence of the methods, we

calculate the fields on progressively finer grids from a first grid

consisting of 101 � 41 points. The error represents the

deviation of the exit surface amplitudes to that computed

using the normal finite difference approach on a very fine grid

of 10 241 � 25 601 steps (evaluated at the points where the

coarse and fine grids coincide).

Fig. 3 shows the convergence of the three integration

methods. While all methods show the expected convergence

on a perfect sample (a), the traditional half-step method does

not show the expected second-order convergence with the

edge dislocation sample (b). The first-order exponential Euler

method suffers from an exponential instability and only gives

a qualitatively correct result when impractically small step

sizes are utilized.

To demonstrate that our method is not limited only to the

exact Bragg condition, we also test the convergence of our

method at the tails of the rocking curve. Fig. 4(a) shows the

convergence of the screw-dislocation test case at a rocking

angle of � = 300 mrad, where the two methods reach the

expected first- and second-order convergence. At this point,

the diffraction is approximately kinematical. Figs. 4(c), 4(d)

show that the transmitted beam is approximately undisturbed

by the crystal and that the beam is only significantly scattered

in small areas close to the surface and the dislocation. Fig. 4(b)

shows the profile of the scattered beam at the exit surface as a

function of rocking angle. We see that at low angles, the

scattering is clearly dynamical and the profile shows Pendel-

lösung fringes. At higher angles, the bulk of the crystal scatters

less strongly and the scattering pattern is dominated by the

defects. Because the divergence of the incident radiation is

larger than the characteristic ‘Darwin width’ of dynamical

diffraction, the crystal approximately acts as an analyser, and

maps out the angular spectrum of the incident beam, which is

further illustrated in Fig. 4(e).

6. Discussion and conclusion

We have described and demonstrated a finite difference

scheme capable of integrating the TTEs on an orthogonal grid

with few restrictions on the choice of grid. We achieve this by

implicitly utilizing Fourier interpolation at the level of the

individual finite difference step. The method results in

approximately the same error as the traditional half-step finite

difference scheme.

The method utilizes FFTs (fast Fourier transforms) at each

step and has to perform in total four 2D Fourier transforms of

the entire sample volume (the Heun method makes two

evaluations of the B function at each step), which is expected

to have a computational cost compared with the existing

methods. In certain geometries, these may be replaced by 1D

Fourier transforms. Our experience here, using unoptimized

code, is that this increase amounts to about a factor of 4, which
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Figure 3
Convergence of the new exponential integrators and a traditional finite
difference scheme. The black lines mark first- and second-order
convergence. All errors are calculated relative to the solution using the
traditional half-step method with 10 241 steps. We tested integration
schemes on two different samples. One (a) is a perfect crystal, the other
(b) is the edge dislocation type sample shown in Fig. 2. All calculations
are in the case � ¼ 0.



we believe should be unimportant in most cases of practical

interest.

The ability to freely choose the computational grid makes

implementation of this approach easier, especially when it

needs to be combined with other numerical modelling

methods, for example if the input for either the crystal

microstructure or the incident field is given by a numerical

simulation, or if the scattered fields should be propagated

through image-forming optics.

APPENDIX A
Traditional finite difference scheme

For comparison with the exponential integrators presented in

this paper, we also present calculations performed with a

second-order implicit finite difference scheme based on a

central difference estimate for the derivatives, which is often

applied for dynamical scattering calculations. The derivation

here follows the one given by Shabalin et al. (2017) with small

changes to the notation.

We limit our attention to a symmetric geometry defined by

k0 ¼ k

sin �
0

cos �

2
4

3
5 and kh ¼ k

� sin �
0

cos �

2
4

3
5: ð17Þ

Starting from equation (5) we introduce the coordinates

s0

sh

� �
¼

sin � cos �
� sin � cos �

� �
x

z

� �
ð18Þ

and arrive at a well known form of the TTE (suppressing the y

dependence):

@E0ðs0; shÞ

@s0

¼
k

2i
�0E0ðs0; shÞ þ �

0

h
ðs0; shÞEhðs0; shÞ

� �
@Ehðs0; shÞ

@sh

¼
k

2i
�0Ehðs0; shÞ þ �

0
hðs0; shÞE0ðs0; shÞ

� �
: ð19Þ

To avoid truncation errors due to the complex rotation

caused by the �0 terms, we introduce the scaled fields

E00 ¼ exp½�0ðik=2Þs0� and E0h ¼ exp½�0ðik=2Þsh�. Plugging in

and simplifying some terms gives:
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Figure 4
Testing of the integration algorithms for finite rocking angles. (a) Convergence plot for the screw-dislocation test case at � = 300 mrad. (b) Spatial profile
of the scattered beam as a function of rocking angle. (c) Transmitted beam in a cross section of the crystal at � = 300 mrad. (d) Scattered beam in a cross
section of the crystal at � = 300 mrad. (e) Integrated rocking curve of the dislocation test case overlaid on the same curve calculated for a perfect crystal
and the angular spectrum of the incident beam.



@E00ðs0; shÞ

@s0

¼
k

2i
exp �0

ik

2
ðs0 � shÞ

� �
�0

h
ðs0; shÞE

0
hðs0; shÞ

@E0hðs0; shÞ

@sh

¼
k

2i
exp �0

ik

2
ðsh � s0Þ

� �
�0hðs0; shÞE

0
0ðs0; shÞ:

ð20Þ

We now introduce a rectangular grid in the original ðx; yÞ

coordinates with step size h in the z direction and h tanð�Þ in

the x direction. With this choice of grid a subset consisting of

every second grid point constitutes a sheared grid aligned with

the s0 and sh directions with both step sizes equal to

p ¼ h½1þ tanð�Þ2�1=2. This allows us to calculate the fields

using the finite difference methods and the exponential inte-

grators on grids with the same density of grid points and that

coincide on every second plane. We therefore have to choose a

grid with an odd number of grid points in the x direction so

that we can compare the result on the final slice (see Fig. 5).

We denote the discretized envelope fields by

E0ðxj; ziÞ ¼ Ei;j. The recurrence relation is obtained by the

centred first-order approximation for the derivatives and a

similar centred approximation for the right-hand sides in

equation (20) to arrive at the equations

E
i;j
0 � E

i�1;j�1
0

p
¼

k

2i
B

E
i;j
h þ E

i�1;j�1
h

2

E
i;j
h � E

i�1;jþ1
h

p
¼

k

2i
D

E
i;j
0 þ E

i�1;jþ1
0

2
; ð21Þ

where

B ¼ exp �0

ik

2
ðs

i;j
0 � s

i;j
h � p=2Þ

� �
�h s

i;j
0 � p=2; s

i;j
h


 �
and

D ¼ exp �0

ik

2
ðs

i;j
h � s

i;j
0 � p=2Þ

� �
�h s

i;j
0 ; s

i;j
h � p=2


 �
:

Introducing the constant A ¼ 4i=kp we can finally write

E
i;j
0 ¼ E

i�1;j�1
0 þ B=AE

i;j
h þ B=AE

i�1;j�1
h

E
i;j
h ¼ E

i�1;jþ1
h þD=AE

i;j
0 þD=AE

i�1;jþ1
0 ð22Þ

which are the implicit recurrence relations used in the calcu-

lations. Furthermore, we need the boundary conditions, that

the fields are both zero at the top and bottom surfaces:

Ei;0
0=h ¼ E

i;Nx�1
0=h ¼ 0.

A1. Availability

A Python3 implementation of the described algorithm is

available at https://github.com/Multiscale-imaging/dynamical

_diffraction and is given as supporting information.

Funding information

MC and HS acknowledge funding from ERC Starting Grant

No. 804665.

References

Authier, A., Malgrange, C. & Tournarie, M. (1968). Acta Cryst. 24,
126–136.

Bremer, J. (1984). Acta Cryst. 40, 283–291.
Carnis, J., Gao, L., Labat, S., Kim, Y. Y., Hofmann, J. P., Leake, S. J.,
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Figure 5
Computational grids used for the traditional half-step approach marked
with red dots and for the exponential integrators marked with blue circles.
The recurrence relation for the half-step method is drawn with green
arrows.
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