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The dynamical theory of diffraction is used to analyse irregular X-ray mirage

interference fringes observed in Si220 X-ray reflection topography from a

weakly bent, thin crystal due to gravity. The origin of the irregular fringes is

attributed to the interference between mirage diffracted beams and a reflected

beam from the back surface, which is a new type of interference fringe. The

irregular fringes are reproduced by calculating the reflected intensities

numerically. The effects of absorption and thermal vibration are quite important

for the reproduction. The result shows that the interference fringes depend on

the strain as well as the thickness of the crystal, which indicates that the fringes

should be useful for analysing weak strain in a crystal as an application.

1. Introduction

In a weakly bent crystal with a constant strain gradient, the

index of refraction is variable with respect to the depth. When

the X-ray beam enters the crystal, it propagates along a

hyperbolic trajectory and is reflected back to the entrance

surface as shown by S1 in Fig. 1, which is called mirage

diffraction (Authier, 2001). Jongsukswat et al. (2012) have

observed interference fringes of mirage diffracted beams

(IFMD) from a weakly bent plane-parallel crystal and

measured the strain of the crystal. The IFMD are caused by

the interference between two mirage diffracted beams such as

S1 and S2 shown in Fig. 1(c). Fukamachi et al. (2011b) have

observed another type of mirage interference fringe caused by

interference between diffracted beam S1 and reflected beam

SB from the back surface (IFMRB) when the strain gradient of

a thin crystal is very small. The fringe spacing of IFMD

decreases as a function of the distance between the incident

point and the exit point (x), whereas that of IFMRB increases.

It is easy to distinguish IFMD and IFMRB. However, IFMD

and IFMRB can coexist depending on the strain gradient and

the thickness of the crystal. We report on irregular mirage

interference fringes when IFMD and IFMRB coexist and their

origin using the dynamical theory of diffraction.

2. Experimental results

Fig. 1(a) shows the observed Si220 topography, which is a part

of Fig. 3 of Jongsukswat et al. (2013). The sample was a plane-

parallel Si single crystal 50 mm long, 15 mm wide and 0.28 mm

thick. One end of the sample was pasted to an aluminium base

with pine resin as shown in Fig. 1(b). The sample was bent due

to the gravity force. The diffraction experiments were carried

out at the bending-magnet beamline BL-15C, Photon Factory,

KEK, Tsukuba, Japan. The incident X-rays were � polarized
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and monochromated by a Si(111) double-crystal mono-

chromator. The X-ray energy was 11100 � 0.5 eV. The beam

size was 0.02 mm long and 4 mm wide. The details of the

experiment are described by Jongsukswat et al. (2013).

Fig. 1(a) shows the topography in the range of distance (l)

between 16 and 20 mm from the free edge of the sample. The

dark contrast around 1 mm from the left is the primary

diffraction. The fringe contrasts observed on the right side of it

are denoted as MIFMD (modified IFMD) to be studied in this

paper. Fig. 1(c) shows schematically the trajectories of the

refracted beams in the crystal for formation of IFMD and

IFMRB. Here the X-ray beam propagating along the energy

flow, that is the Poynting vector of the beam, is referred to as

the refracted beam. P0 and Ph represent the incident beam at

the point A0 and the primary diffracted beam, respectively.

The refracted beam S1 propagates along a hyperbolic trajec-

tory and is emitted from the entrance surface at A2 without

reaching the back surface – it is called the first-order mirage

diffracted beam. Similarly, the beam S2 is another mirage

diffracted beam reflected once from the entrance surface at

A1, called the second-order mirage diffracted beam. The beam

SB is reflected from the back surface and emitted from the

entrance surface at A2, called the back-surface reflected beam.

The beams S3 and S4 should be called the second- and third-

order mirage diffracted beams emitted at A3, respectively. The

longest distance xc from the incident point to the emitted point

for observing the first-order mirage diffracted beam is given

by the mirage beam Sc whose vertex of the trajectory is at the

back surface. Interference of the first-order mirage diffracted

beam with higher-order beams and the

back-surface reflected beam P1
m can be

observed for x< xc, which is called

the first zone hereafter. Interference

between mirage diffracted beams higher

than the first order P2
m can be observed

for xc < x< 2xc, which is called the

second zone. In Fig. 1(a), the distance

from the incident point to the lateral

surface xL is smaller than 2xc. The

second zone is given by xc < x< xL. The

fringes on the rightmost side are the

diffracted beams emitted from the

lateral surface Plh and are called IFLSD

(interference fringes emitted from the

lateral surface in the diffracted beam

direction).

In the first zone, seven groups of

fringes from M1 to M7 may be attributed

to IFMD as will be shown in Section 4.2.

As the crystal is bent due to gravity, the

load is constant along the gravity. The

strain gradient (�) is proportional to the

square of the distance (l) from the free

end according to rod theory. By using

the procedure described by Jong-

sukswat et al. (2012), the strain gradi-

ents determined from the positions of

the third peak (M3) of IFMD are � = 0.15 mm�1 at the upper

end (l = 16 mm) and � = 0.23 mm�1 at the lower end (l =

20 mm) of Fig. 1(a).

In the first IFMD (M1), there are six fine interference

fringes attributable to IFMRB. In the second IFMD (M2),

there are three fine interference fringes attributable to

IFMRB. The third fringe M3 shows dark contrast in the upper

side and the contrast becomes darker in the lower side. The

fringe M4 in the upper side disappears around l = 18 mm. The

dark contrast M4 from the lower side disappears around the

site (l ’ 17 mm) in the middle of M4 and M5 coming from the

upper side. The fringe M6 in the upper side is continuously

connected to the fringe M5 in the lower side. In the second

zone, three wide bands with low contrast can be seen on the

lower side, which are labelled as M01, M02 and M03. The

behaviours of these interference fringes M1 to M6 as well as

M01 to M03 are quite irregular.

3. Theoretical analysis

3.1. Basis

In the symmetric Bragg mode, the deviation parameter (W)

from the Bragg condition of the angle �B is given by

W ¼
sin 2�B

C �h��hð Þ
1=2

�� �B þ
j�0j

sin 2�B

� �� �
: ð1Þ
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Figure 1
(a) Observed Si220 topography from a weakly bent plane-parallel crystal. The intensity profile in
Fig. 6(a) is obtained along the horizontal dashed line. (b) Optical geometry around the crystal. P0

and Ph represent the incident and the reflected beams, respectively. (c) Schematic illustration of the
beam trajectories. ’1 is the angle between S1 and the lattice plane at A0. (d) The real part of the
dispersion surface (thick solid line). The abscissa represents the X axis and the ordinate the Zr axis.
L0 is the Lorentz point at (�rx; h=2). The part of the dispersion surface below d2 belongs to branch
(1) and the part above d2 belongs to branch (2). The width of the shaded area corresponds to the
divergent angle of the incident beam.



Here � is the incident glancing angle, C the polarization factor

and �h the hth Fourier coefficient of dielectric susceptibility of

the crystal. According to Gronkowski & Malgrange (1984),

the beam trajectory of the refracted beam in a weakly bent

non-absorbing crystal is given by

�z

tan �B

þWs

� �2

� �xþ s Wsð Þ W2
s � 1

� �1=2
h i2

¼ 1; ð2Þ

when the beam is incident outside the total reflection region

(jWsj � 1). Ws is the value of W at the incident point on the

surface. The parameter sðWsÞ is 1 for Ws > 1 and �1 for

Ws < 1. The trajectory shows a hyperbolic form as seen in Fig.

1(c). The origin of the coordinate is taken at the incident point

(A0), the x axis is along the direction from A0 to A1 and the z

axis along the inward normal to the surface. The strain

gradient parameter � is defined as

� ¼
�

C �h��hð Þ
1=2

@2 h � uð Þ

@x0@xh

; ð3Þ

where h is the reciprocal vector, u is the atomic displacement

vector, � the X-ray wavelength, x0 and xh are the coordinates

of the transmitted and diffracted beam directions, respectively.

When �W< 0 ð�> 0Þ, a beam incident on the crystal at A0

propagates along the hyperbolic trajectory S1 in Fig. 1(c) and

changes the direction from +z to �z at the vertex (xa; za) to

reach the point A2. At A2, a part of the beam is emitted from

the surface as the mirage diffracted beam and the rest is

reflected back to the crystal. The reflected beam propagates

along a similar hyperbolic trajectory starting from A2. This

propagation process repeats. The electric field of the X-ray

after n times of reflection is given by

Ehnim exp �in	0ð Þ ¼ E0Rhnim exp �in	mð Þ ð4Þ

according to Fukamachi et al. (2010). Here E0 is the electric

field of the incident X-ray, 	0 is the phase shift in vacuum and

real. The phase shift of the refracted beam in the crystal 	m is

complex by taking the absorption effect into account and

given by

	m ¼
R

k � dr ¼ 	mr þ i	mi: ð5Þ

Here the integration is carried out along the trajectory, k is the

wavevector in the crystal and r is the position vector. Rhnim is

given as

Rhnim ¼ rn�1
1 ðr

2
1 � 1Þ; n> 0; ð6Þ

where r1 is expressed as

r1 ¼
D

1ð1Þ
h

D
1ð1Þ
0

: ð7Þ

D
1ð1Þ
0 and D

1ð1Þ
h are the amplitudes of the 0 and hth Fourier

coefficients of the electric displacement. The first number

in the superscript represents the number of reflections and

the second number (1) denotes the branch (1) of the disper-

sion surface.

We now need to calculate the phase shift 	m by using the

dispersion surface. When the absorption is weak (ka < 0:1),

the complex dispersion surface for the Bragg mode is given as

Z ¼ Zr þ iZi ’
GB

2 tan �B

W þ igð Þ
2
� 1þ i2kað Þ

� 	1=2
; ð8Þ

according to Fukamachi et al. (2002). ka is expressed as

ka ¼
j�hij

j�hrj
: ð9Þ

�hr and �hi are the real and the imaginary parts of �h. GB and g

are given by

GB ¼
K0C �h��hð Þ

1=2

cos �B

ð10Þ

and

g ¼
�0i

C �hr



 

2 þ �hi



 

2� �1=2
’

�0i

C �hr



 

 : ð11Þ

By squaring both sides of equation (8) and ignoring small

terms Z2
i , ka

2 and g2, equation (8) becomes

Zr þ iZið Þ
2
’ Zr

2
þ i2ZrZi

¼
GB

2 tan �B

� �2

W2 � 1þ i2g W � g0ð Þ
� 	

; ð12Þ

where the parameter g0 is given by

g0 ¼
ka

g
: ð13Þ

The real part of equation (12) becomes

Zr ¼
�GB

2 tan �B

W2
� 1

� �1=2
ð14Þ

which agrees with the expression without absorption, indi-

cating the validity of equation (2). The real part of the phase

shift 	mr can be written as

	mr ¼ 	mrx þ 	mrz ¼
R

krx dxþ
R

krz dz: ð15Þ

Here krx and krz are x and z components of the real part kr of

the wavevector k

k ¼ kr þ iki ð16Þ

with ki its imaginary part. As the coordinate of the Lorentz

point is ð�rx; h=2Þ (h ¼ jhj) according to Fig. 1(d), 	mrx is

rewritten as

	mrx ¼
R

krx dx ¼ �rxxþ 2
Rx=2

0

X dx: ð17Þ

�rx is the real part of the average wavenumber in the crystal.

The first term in equation (17) �rxx is the order of 
, which is

much smaller than the second term and can be neglected. As

X in equation (17) is

X ¼ �
GB

2
W ð18Þ

and
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dx ¼
1

�
d W2

� 1
� �1=2

ð19aÞ

dz ¼
tan �B

�
dW; ð19bÞ

by using equation (2), the second term of equation (17)

becomes

Zx=2

0

X dx ¼
�GB

2�

Z�1

Ws

W2

W2 � 1ð Þ
1=2

dW: ð20Þ

The phase shift 	mrz is obtained as

	mrz ¼

Z
krz dz ¼ �2

Zza

0

h

2
þ Zr

� �
dz ¼ �hza � 2

Zza

0

Zr dz

ð21Þ

by referring to Fig. 1(d). The first term on the right-hand side

hza is the order of 
 and much smaller than the second term.

As the second term is given by

Zza

0

Zr dz ¼
�GB

2�

Z�1

Ws

W2 � 1
� �1=2

dW; ð22Þ

equation (15) becomes

	mr ¼ 	mrx þ 	mrz ¼
�GB

�

Z�1

Ws

1

W2 � 1ð Þ
1=2

dW ¼
�GB

�
M Wsð Þ

ð23Þ

with

MðWsÞ ¼ log Ws þ W2
s � 1

� �1=2



 


: ð24Þ

From the relation of the imaginary part of equation (12),

Zi ¼
�1

Zr

GB

2 tan �B

� �2

g W � g0ð Þ ¼
�gGB

2 tan �B

W � g0ð Þ

W2 � 1ð Þ
1=2
ð25Þ

is obtained.

For the imaginary part of the phase shift 	mi, only the z

component needs to be considered. By using the relation

gGB

2 tan �B

¼
K0�0i

2 sin �B

¼
��a

2 sin �B

ð26Þ

and equation (25), 	mi is given by

	mi ¼

Z
kiz dz ¼ 2

Zza

0

Zi dz ¼
�a

� cos �B

Z�1

Ws

W � g0ð Þ

W2 � 1ð Þ
1=2

dW

ð27Þ

¼
��ax

2 cos �B

1þ
2 g0


 



x �


 

 M Wsð Þ

" #
: ð28Þ

Here �a is the mean absorption coefficient. The exit point (x)

of the mirage diffracted beam is given by

x ¼
2 W2

s � 1ð Þ
1=2

�


 

 ; ð29Þ

using the relation x ¼ 2xa due to the symmetry of the trajec-

tory. The initial value of the deviation parameter Ws is

obtained from the exit point (x) of the mirage diffracted beam.

For a monatomic crystal with its atomic scattering factor being

positive, the condition W< �1 corresponds to the anomalous

transmission of the Borrmann effect (Fukamachi et al., 2002).

In the following, we will study the fringes under this condition.

As the X-rays are � polarized in the experiment, the polar-

ization factor C in equation (1) is 1.

3.2. Mirage interference fringes

In the first zone, the electric field of IFMD at A2 is given by

E0Rhnim expð�in	hnim Þ ¼ E0Rhnim expðn	hnimi Þ expð�in	hnimr Þ

¼ Ahnim expð�in	hnimr Þ ð30Þ

with Ahnim as

Ahnim ¼ E0Rhnim expðn	hnimi Þ: ð31Þ

The electric field at A2 is written by

expð�i	h1imr Þ½A
h1i
m þAh2im expð�i�	h2imr Þ þ . . .� ð32Þ

where the phase shift �	hnimr is defined by

�	hnimr ¼ n	hnimr � 	
h1i
mr : ð33Þ

In the second zone, a similar equation is obtained without the

first-order mirage diffracted beam.

IFMRB observed in the first zone has been explained by the

interference between the first-order mirage diffracted beam S1

and a reflected beam from the back surface SB in Fig. 1(c) as

expressed by

expð�i	h1imr Þ½A
h1i
m þAB expð�i�	BrÞ�: ð34Þ

The amplitude (AB ¼ jABj) is given by

AB ¼ r1 WBsð Þ
r1 WBsð Þ

r2 WBeð Þ
� 1

� �
exp 	Bið Þ E0



 

; ð35Þ

where WBs is the value of W of the beam SB at the incident

point and WBe is that at the reflection point (x=2;HÞ on the

back surface. There is a relation between WBe and WBs given

by

WBe ¼ WBs þ
�H

tan �B

: ð36Þ

In equation (34), �	Br is given by

�	Br ¼
GB

�
fMðW1sÞ � ½MðWBeÞ �MðWBsÞ�g; ð37Þ

where W1s is the value of W at the incident point for the beam

S1. �	Bi in equation (35) is given by
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	Bi ¼
ka�a

�g cos �B

n
ðW2

Be � 1Þ1=2
� ðW2

Bs � 1Þ1=2

� jg0j MðWBeÞ �MðWBsÞ
� 	o

: ð38Þ

In order to explain irregular mirage interference fringes

observed in the experiment, it is necessary to introduce

MIFMD in the first zone given by adding a back-surface

reflected beam to equation (32) as

expð�i	h1imr Þ½A
h1i
m þAh2im expð�i�	h2imr Þ þ . . .

þAB expð�i�	BrÞ�: ð39Þ

MIFMD in the second zone is composed of mirage diffracted

beams higher than the first order, as the contribution of the

back-surface reflected beam is small enough to be neglected.

3.3. Angular amplification

For observing MIFMD, it is necessary to have a certain

width of �W to excite the first- as well as the higher-order

mirage diffracted beams simultaneously. There is a relation

tan ’ ¼
W2 � 1ð Þ

1=2

Wj j
tan �B ð40Þ

between W and ’ which is the angle between the refracted

beam and the lattice plane; ’ ¼ 0 when W ¼ �1 and ’ ’ �B

when W ¼ �3 (�W = 2). If �W ’ 2, the divergence angle of

the refracted beam is approximately equal to �B, the refracted

beams are excited within the Borrmann triangle. The diver-

gence angle of the incident X-rays corresponding to �W = 2

can be derived as �� = 8.8 mrad by using equation (1). The

angle amplification factor (�’/��) is approximately

3:1� 104.

As the topography was taken by fixing the crystal as shown

in Fig. 1(c), the incident glancing angle � was fixed. In order to

observe mirage interference fringes, a finite divergence angle

�� is needed. The divergence angle �� is related to the

divergence angle ��B of the beam from the monochromator

as

j��Bj ¼ sin2 �Bj��j ð41Þ

(Fukamachi et al., 2014, 2015, 2019). By using the Bragg

condition, the width �E of X-ray energy (E) and the angle

width ��B are related as

�E

E










 ¼ ��B

tan �B










: ð42Þ

The refracted beams involved in the formation of mirage

interference fringes have different wavelengths and different

path lengths. Since the mirage interference fringes are

observed in the experiment, the coherent condition is satisfied

for the refracted beams. The details of the coherent condition

have already been given in the previous papers by Fukamachi

et al. (2014, 2015, 2019).

4. Results of calculation

4.1. Effects of absorption and thermal vibration

Fig. 2 shows the calculated results of MIFMD composed

of mirage diffracted beams and a back-surface reflected

beam. The used values of the strain gradient � and the para-

meter jg0j are 0.2 mm�1 and 1.0, respectively. In the first zone

(0< x< xc), the interference fringes are composed of mirage

diffracted beams from the first to the tenth order and one

back-surface reflected beam. In the second zone (x> xc), the

interference fringes are composed of mirage diffracted beams

from the second to the tenth order.

The effect of the mean absorption �a is shown in Fig. 2.

According to equation (26), we have

�a ¼ cos �BGBka: ð43Þ

When the absorption is ignored, ka is zero. When the

imaginary part of the anomalous scattering factor of Si is

taken into account, ka is 0.02. The blue thin and the black thick

curves show MIFMD for ka ¼ 0 and ka ¼ 0:02, respectively.

Peaks indicated as M1 to M7 in the first zone and M01 and M02 in

the second zone are eventually attributed to MIFMD. When

ka ¼ 0, the peak M5 is about twice higher than M1, and the
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Figure 2
The calculated Si220 reflected intensities of MIFMD for ka ¼ 0:02 (in
black) and ka ¼ 0 (in blue) in the case of � = 0.20 mm�1, xc = 6.3 mm and
xL = 8.4 mm.

Figure 3
The calculated Si220 reflected intensities of MIFMD by taking the
thermal vibration effect into account when � = 0.20 mm�1 and ka ¼ 0:02.
The orange, blue and black lines show the intensities for jg0j ¼ 1, 0.98 and
0.96, respectively.



height of M01 is comparable with that of M1. When ka ¼ 0:02,

all the peak heights are roughly a quarter of those for ka ¼ 0.

The peak heights from M1 to M7 are not so much different,

showing a similar trend of variations in the experiment.

However, M01 shows a similar peak height to M1 while M01 in

Fig. 1(a) shows a much lower peak than M1. It is not possible

to reproduce MIFMD observed in the experiment only by

taking into account the effect of mean absorption.

The thermal vibration effect can be taken into account

through 	Bi in equation (28), as it includes the term g0, which is

given by

g0


 

 ¼ �hi



 


�0i



 

 ¼ exp �Bs2
� �

; ð44Þ

where B expresses the thermal vibration effect and

s ¼ sin �B=�. The calculated MIFMD are shown in Fig. 3. The

orange, blue and black lines show MIFMD for jg0j = 1.0, 0.98

and 0.96, respectively. When jg0j = 1.0, no thermal vibration is

taken into account. When jg0j becomes small, the overall peak

heights become small. When jg0j = 0.98, the peak height of M01
is about 1/3 of M1. The peak height of M01 becomes about 1/10

of M1 for jg0j = 0.96. By comparing with the experimental

results, we adopt 0.96 as the value of jg0j. The value of B

corresponding to jg0j ¼ 0.96 is 0.60 Å2, which is certainly

larger than reported values such as 0.469 Å2 by Flensburg &

Stewart (1999) and 0.4833 Å2 by Sang et al. (2010). The large

value may come from an anisotropic or anharmonic vibra-

tional effect. A further study is needed to confirm such a

vibrational effect quantitatively.

4.2. Comparison of MIFMD with IFMD and IFMRB

In Fig. 4 are shown the calculated intensities of IFMD

(orange), IFMRB (black) and MIFMD (blue). The strain

gradient � is assumed to be 0.20 mm�1. The intensity of IFMD

shows a slow variation as a function of x. The width of a fringe

and the interval between neighbouring fringes become small

when x increases. The peak height in Mn decreases as n (x)

increases. The peak of M6 is extremely small compared with

the neighbouring peaks. IFMRB starts to appear from

xmin ¼ H= tan �B. The width of the fringe and the interval

between neighbouring fringes become large as x increases.

The intervals between neighbouring fringes of IFMRB are

smaller than those of IFMD when x� xmin is small, but these

two intervals are comparable when x becomes close to xc. For

M1, MIFMD is approximately the sum of IFMD and IFMRB.

For M2 and M3, two peaks appear in MIFMD by the influence

of IFMRB. For M3, the peak of IFMD and the valley of

IFMRB appear at the same x and the peak of MIFMD is

lowered. For M5 to M7, the intervals of the fringes of IFMD

and IFMRB are almost the same and the peak heights of

MIFMD are enhanced more than twice those of IFMD.

4.3. Comparison of topographies

Fig. 5 shows the measured topography (a), the calculated

topographies of MIFMD (b), IFMD (c) and IFMRB (d). The

abscissa is the distance l in (a) and the strain gradient � in (b)–

(d). The correspondence between l and � is described in

Section 2.

In Fig. 5(a), there are three dark contrasts of M2 on the left

end (l = 20 mm). The uppermost dark contrast becomes the

lowest fringe of dark contrast of M1 on the right end (l =

16 mm). There are two dark contrasts of M3 on the left end.

The upper dark contrast is weaker than the lower one. The

upper dark contrast is connected to the lowest dark contrast of

M2 on the right end after showing weak contrast around l =

19 mm. The lower dark contrast of M3 on the left end becomes

the dark contrast of M3 on the right end after showing weak

contrast around l = 17 mm.

In Fig. 5(b), there are three dark contrasts of M2 on the left

end. The dark uppermost contrast becomes weak around � =

0.19 mm�1, then it is connected to the lowest dark contrast of

M1 on the right end. There are two dark contrasts of M3 on the

left end. The upper contrast is weaker than the lower one. The
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Figure 4
The calculated Si220 reflected intensities of IFMD (in orange), IFMRB
(in black) and MIFMD (in blue) for � = 0.20 mm�1, ka ¼ 0:02 and
jg0j ¼ 0:96.

Figure 5
(a) The observed Si220 topography. (b), (c) and (d) show the calculated
topographies of MIFMD, IFMD and IFMRB, respectively, for ka ¼ 0:02
and jg0j ¼ 0:96. Fringes in (d) are numbered as Bn (n ¼ 1; 2; . . .) from xc

to xmin, as the phase �	Br is zero at xc and becomes large as x decreases.
The peak appears at a point x corresponding to �	Br ¼ 
ð2n� 1Þ in
equation (37).



contrast disappears around � = 0.21 mm�1, then becomes dark

and the lowest dark contrast of M2 on the right end. The

lowest dark contrast of M3 on the left end disappears around �
= 0.17 mm�1, then becomes the dark contrast of M3 on the

right end. Similar behaviours of fringe contrasts of the

measured topography in Fig. 5(a) are obtained in the calcu-

lated MIFMD topography in (b).

In the calculated IFMD topography in Fig. 5(c), the fringe

M1 shows a wide band of dark contrast. The higher-order

fringes M2 to M7 show the narrower bands and the smaller

interval between the neighbouring fringes than M1. In the

calculated IFMRB topography in Fig. 5(d), the width of the

dark contrasts becomes monotonously large and the distance

between the neighbouring fringes becomes large when x

increases from xmin. Around x = 3.5 mm, the dark contrast of

M2 appears at the left end in (c) and the dark contrast of B10

appears at the left end in (d). The shift of M2 is 1.2 mm from

the left to the right end, while that of B10 is 0.3 mm. The shift

of M2 is four times larger than that of B10. Similarly, the shift of

M7 is larger than that of B1. The variations of interference

fringes both in IFMD (c) and IFMRB (d) topographies are

regular as a function of x. The irregular variations observed in

experiment (a) are only reproduced in MIFMD topography

(b). The irregular variations are caused by the different

variations between IFMD and IFMRB as a function of x as

well as �.

5. Discussion and conclusion

The irregular X-ray mirage interference fringes reported by

Jongsukswat et al. (2013) were analysed using the dynamical

theory of diffraction. It is necessary to take the absorption as

well as thermal vibration effects into account. The absorption

effect reduces the peak intensities of the high-order fringes in

the first zone. The thermal vibration effect reduces mainly the

peak intensities of fringes in the second zone. The calculated

MIFMD reproduces the observed irregular modulation of the

fringes. The origin of the modulation is attributed to the

interference of two or more mirage diffracted beams with a

beam reflected from the back surface.

There are still two points that are unclear. (i) Fig. 6 shows

(a) the line profile of the measured fringes along the dashed

line in Fig. 1(a) and (b) that of the calculated reflected

intensities of MIFMD. The peak positions of M1 and M2 in the

calculated profile appear at x closer to the incident point than

in the measured one. One of the possible reasons is the

dependence of the strain gradient (�) on the distance (x),

which is difficult to estimate by using the deflection theory.

More precise analysis of the MIFMD is necessary in future

work. (ii) The other point is related to IFLSD observed in Fig.

1(a). The intensities of IFLSD are much higher than those of

MIFMD in the second zone. Hirano et al. (2008, 2009a,b) have

observed IFLSD from a plane-parallel crystal without distor-

tion and pointed out that the fringes are caused by the inter-

ference between the beam directly reaching the lateral surface

and the beam reflected once from the back surface. In the

present geometry of a bent crystal, there is no beam reaching

directly the lateral surface as shown in Fig. 1(c). It is necessary

to apply the dynamical theory of diffraction for a distorted

crystal for analysing the IFLSD and the strain gradient of the

crystal. As an application, the X-ray beams of IFLSD can be

used as an X-ray waveguide, since they propagate quite a long

distance from the incident point to the exit point. Fukamachi

et al. (2011a) carried out an experiment on an X-ray

diffractometer by using X-rays of IFLSD from a plane-parallel

crystal as a waveguide and beam splitter. Constructive inter-

ference between many beams is derived in the present analysis

of MIFMD, which should be useful for developing an X-ray

waveguide using IFLSD from a bent crystal.
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