Misconceptions in chemical crystallography are not uncommon for chemistry students.[1] "Even the brightest students in the class have false ideas based on enduring misconceptions that traditional instructional methods cannot overcome."[2] Over the last decade, we have incorporated various active-learning methods and provided different learning paths to our students.[3-9] We herein present our teaching strategy to help chemistry students address some common misconceptions in chemical crystallography, and deepen their understanding of the course material.[7-9] As a result, it ensures students develop the necessary knowledge to employ crystallography in their research.

Reference