APS-U update and structural biology future directions

Robert Fischetti¹, Nagarajan Venugopalan², Vukica Srajer³, Robert Henning⁴, Lisa Keefe⁵, Andrzej Joachimiak⁶, Karolina Michalska⁶, Spencer Anderson⁷, Joseph S. Brunzelle⁸, John Chrzas⁹, John Rose¹⁰, Malcolm Capel¹¹, Jordi Benach¹²

¹N/A ²GM/CA@APS, Argonne National Laboratory, ³CARS, Univ of Chicago, ⁴N/A, ⁵IMCA-CAT / HWI @ Advanced Photon Source, Argonne National Lab, ⁶Argonne National Laboratory/University of Chicago, ⁷Argonne National Laboratory, ⁸Northwestern University, ⁹3Northwestern Synchrotron Research Center, LSCAT, Northwestern University, ¹⁰SER-CAT/University of Georgia, ¹¹SER-CAT/University of Georgia, ¹²Cornell University Eli Lilly & Company

rfischetti@anl.gov

After 25 years in operation, the Advanced Photon Source (APS) is undergoing a massive upgrade. The current electron storage ring will be replaced with state-of-the art technology that will increase the brightness of the X-ray beams up to 500 times. This will require a year-long shutdown period, currently scheduled to begin in April 2023, during which time the APS will not be accessible to users.

In this talk, I will present an update on the upgraded APS (APS-U) capabilities and timeline, and give an overview of future capabilities of the APS-U structural biology sectors. This talk will help set the stage for the subsequent talks from the other U.S. Light Sources about their plans to help mitigate the impact of the APS dark period.