Utilization of FIB-SEM Nanotomography to Visualize Early HCoV-229E Virus Mediated Endocytosis Nanoscale Interactions
 Alyssa Williams ${ }^{1}$, Maria Davila ${ }^{2}$, Karen Mossman ${ }^{3}$, Kathryn Grandfield ${ }^{4}$, Michael Phaneuf ${ }^{5}$, Nabil Bassim ${ }^{6}$
 ${ }^{1}$ McMaster University ${ }^{2} \mathrm{~N} / \mathrm{A},{ }^{3} \mathrm{~N} / \mathrm{A},{ }^{4} \mathrm{~N} / \mathrm{A},{ }^{5} \mathrm{~N} / \mathrm{A},{ }^{6} \mathrm{~N} / \mathrm{A}$
 willia16@mcmaster.ca

Focused ion beam scanning electron microscopy (FIB-SEM) nanotomography has widely been used in several biological applications to gain structural and spatial information about nanoscale biological events. FIB-SEM utilizes an iterative ion beam milling and electron beam imaging process during nanotomography acquisition to image 3D volumes of specimens. This destructive imaging technique can achieve high resolution $\sim 3 \mathrm{~nm}$ voxel sizes to capture impressive ultrastructural details. In this study, the resolution of FIB-SEM nanotomography was pushed to achieve $\sim 2 \mathrm{~nm}$ resolution to visualize early human coronavirus 229 E ($\mathrm{HCoV}-229 \mathrm{E}$) virus particles binding to lung fibroblast cells, particularly to visualize the spike proteins that facilitate this activity. HCoV 229 E virus particles were fluorescently labelled with DiO , incubated with lung fibroblast cells and then imaged with the AxioImager.M2 microscope (Zeiss) to locate virus-cell binding events. Once samples were prepared for electron microscopy, viruscell binding regions of interest were relocated in the FIB-SEM microscope, where site-specific 3D FIB-SEM tomography acquisition using the Atlas 3D nanotomography program (Fibics) was performed. FIB-SEM nanotomography data shows HCoV-229E spike protein attachment ($\sim 10 \mathrm{~nm}$) to the lung fibroblast cell membrane, while still achieving a $\sim 20 \mu \mathrm{~m}$ field of view that captures the context of the cell environment. This investigation displays early virus-mediated endocytosis stages of $\mathrm{HCoV}-229 \mathrm{E}$ virus activity and demonstrates displays the advantageous application of FIB-SEM nanotomography to visual whole cell imaging while still capturing nanoscale virus interactions at nanoscale resolution.

