MS18 Biomineralogy and bioinspired materials

MS18-2-1 Texture and microstructure of the outer layer of a brachiopod fossil from the Terebratulida order (-155 My)

D. Vinci 1, B. Maestracci 2, S. Gascoin 2, M. Gauduchon 3, P. Gauduchon 3, D. Chateigner 2
1European XFEL, Holzkoppel 4 - Schenefeld (Germany), 2Laboratoire CRISMAT-CNRS, IUT GON, Université de Caen Normandie, Normandie Université, 6 Bd. M. Juin - Caen (France), 3Ré Nature Environnement, 14 rue de Montamer - Sainte Marie de Ré (France)

Abstract
Quantitative analysis of the crystallographic texture and microstructure of the biomineral layers of some invertebrates provide a better understanding of the species’ phylogenetic placement, as well as they specify the purely mineral impact on their shell growth. For example, in current molluscs, the phylogenetic signal due to the strong and varied textures of the aragonitic layers helps to specify certain hypotheses [1], and in extinct fossilized species with calcitic layers to establish possible kinship relations [2]. The textures of the biomineral layers of the mollusc clade have been extensively studied, unlike to the brachiopod and bryozoan clades.

In this contribution, we present the outer calcitic layer of a fossilised brachiopod species of the Upper Jurassic (Kimmeridgien stage), belonging to the order Terebratulida. The sample was collected in Loix-en-Ré, Charente-Maritime, France. The layer was measured using 4-circles X-ray diffraction, then the texture was estimated by using the Combined Analysis method [3]. It exhibits a fibre texture with the <001> fibre axis perpendicular to the layer plane. The absence of preferred orientations perpendicular to <001> indicates a behaviour already observed in the fossil calcite layers and current molluscs, as well as in bryozoans.

References

{0012} and {300} pole figures of calcite.