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This paper develops geographic style maps containing two-dimensional lattices

in all known periodic crystals parameterized by recent complete invariants.

Motivated by rigid crystal structures, lattices are considered up to rigid motion

and uniform scaling. The resulting space of two-dimensional lattices is a square

with identified edges or a punctured sphere. The new continuous maps show all

Bravais classes as low-dimensional subspaces, visualize hundreds of thousands

of lattices of real crystal structures from the Cambridge Structural Database,

and motivate the development of continuous and invariant-based crystal-

lography.

1. Practical motivations for solving the problem of how
to continuously classify lattices

This paper for mathematical crystallographers presents

applications of the work of Kurlin (2022b) written for math-

ematicians and computer scientists, with proofs of the invar-

iance of map coordinates up to basis choice, and their

continuity under perturbations of a basis. A lattice can be

considered as a periodic crystal whose atomic motif consists of

a single point. In Euclidean space Rn, a lattice � � Rn consists

of all integer linear combinations of basis vectors v1, . . . , vn,

which span a primitive unit cell U of �.

Crystallography traditionally splits crystals into only finitely

many classes, for instance by their space-group types. These

discrete symmetry-based classifications were suitable for

distinguishing highly symmetric crystals manually or simply by

eye. Nowadays crystals are simulated and synthesized on an

industrial scale. The Cambridge Structural Database (CSD)

contains nearly 1.2 million existing crystal structures (Groom

et al., 2016). Crystal structure prediction (CSP) tools generate

millions of crystal structures even for a fixed chemical

composition (Pulido et al., 2017), mostly with P1 symmetry.

Data sets of this size require finer classifications than by 230

crystallographic groups.

A more important reason for a continuous approach to

classifying periodic structures is the inevitability of noise in

data. Slight changes in initial simulated or actual crystal-

lization conditions mean that the same crystal can have

slightly different X-ray patterns, leading to close but distinct

structures. Fig. 1 shows that a reduced cell cannot be used to

continuously quantify a distance between general periodic

sets. If we consider only lattices, a similar discontinuity of a

reduced basis arises in Fig. 2.

Consider the family of lattices with the basis v1 = (1, 0),

v2(t) = (�t, 2) in Fig. 2, where the parameter t varies

continuously in [0, 1]. Since the initial basis v1 = (1, 0), v2(0) =

(0, 2) and final basis v1 = (1, 0), v2(1) = (�1, 2) define identical

lattices, this continuous family of lattices is a closed loop in the

space of all lattices. For t 2 ½0; 1
2Þ, the given basis v1 = (1, 0),
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v2(t) = (�t, 2) is reduced by Definition 2.1. At the critical

moment t ¼ 1
2, the lattice has several primitive bases that can

be chosen as reduced.

When t passes through 1
2, if we keep the angle between basis

vectors continuous, the reduced basis v1 = (1, 0), v2ð
1
2Þ =

ð� 1
2 ; 2Þ switches to v1 = (1, 0), v0ð

1
2Þ ¼ ð�

1
2 ;�2Þ. For any

choice at t ¼ 1
2, the basis v1 = (1, 0), v0(t) = (t � 1, � 2) will

be a new reduced basis for t 2 ð12 ; 1�. The above change at

t ¼ 1
2 creates the discontinuity because the given bases

v1 ¼ ð1; 0Þ; v2ð
1
2� "Þ ¼ ð"�

1
2 ; 2Þ and v1 ¼ ð1; 0Þ; v2ð

1
2þ "Þ =

ð�"� 1
2 ; 2Þ at t ¼ 1

2� " differ only by a small perturbation

2" > 0 in all coordinates but the lattices have the reduced

bases v1, v2ð
1
2� "Þ ¼ ð"�

1
2 ; 2Þ and v1, v0ð

1
2þ "Þ ¼ ð"�

1
2 ;�2Þ,

whose last coordinates differ by 4. These reduced bases cannot

be made close by rigid motion because they have opposite

anticlockwise angles from v1 to the longer vector.

One way to call lattices identical (or equivalent) is to ignore

deviations of lattice parameters up to a certain threshold. An

equivalence gives rise to a justified classification only if this

equivalence relation (denoted by �) satisfies the axioms: (i)

reflexivity: any lattice � is equivalent to itself, so � � �; (ii)

symmetry: if � � �0, then �0 � �; (iii) transitivity: if � � �0

and �0 � �00, then � � �00.
The transitivity axiom is needed to split lattices into disjoint

equivalence classes: the class [�] consists of all lattices

equivalent to �, since if � is equivalent to �0, which is

equivalent to �00, all three lattices are in the same class. Past

equivalences in the work of Lima-de-Faria et al. (1990) use

numerical thresholds to determine a lattice class but, as Fig. 3

illustrates, all lattices can be made equivalent through suffi-

ciently many slight perturbations up to any positive threshold

due to the transitivity axiom.

An alternative mathematical approach classifies lattices by

space groups and finer algebraic structures (Nespolo, 2008).

Since crystal structures are determined as rigid forms, the most

practically important equivalence of crystal structures and

their lattices is a rigid motion, which in R2 is any composition

of translations and rotations. This is the strongest possible

equivalence on crystals that are indistinguishable as rigid

bodies.

Slightly weaker is equivalence based on isometry or

congruence, denoted by � ffi �0, which is any rigid motion

composed of mirror reflections. Even if we fix an equivalence

such as isometry, Sacchi et al. (2020) highlight that the key

question ‘same or different’ remains unanswered. What is

needed is the notion of an invariant.

Definition 1.1 (invariants versus complete invariants). A

descriptor I, such as a numerical vector, is called an isometry

invariant of a lattice � � R2 if I takes the same value on all

isometric lattices: if �ffi�0 are isometric then I(�) = I(�0), so

I has no false negatives. An isometry invariant I is called

complete (or injective) if the converse also holds: if I(�) =

I(�0) then � ffi�0, so I distinguishes all non-isometric lattices.

Hence a complete invariant I has neither false negatives nor

false positives (see Fig. 4).

In a fixed coordinate system, the basis vectors are not

isometry invariants as they change under rotation, but the

primitive cell area is preserved by isometry. If an invariant I

takes different values on lattices �, �0, these lattices are

certainly not isometric, while non-invariants cannot help

distinguish equivalent objects. For example, isometric lattices

� ffi �0 can have infinitely many primitive bases. Most

isometry invariants allow false positives that are non-isometric

lattices � 6ffi �0 with I(�) = I(�0). For instance, infinitely many

non-isometric lattices have the same primitive cell area.

Complete invariants are the main goal of all classifications.

Continuous invariants, which change only slightly under small

perturbations of the underlying object, are even better. The

dependence of pseudosymmetry on thresholds discussed by

Zwart et al. (2008) can be resolved in a continuous way by

finding, for any given lattice, its closest higher-symmetry

neighbour through continuous invariants as in Problem 1.2.

Problem 1.2. Find a complete isometry invariant I(�) of any

lattice � � R2 with a metric d satisfying all necessary axioms

and the new continuity condition below:

2 Matthew Bright et al. � Geographic style maps for two-dimensional lattices Acta Cryst. (2023). A79, 1–13

crystal lattices

Figure 3
All lattices continuously deform into each other if we allow any small
changes.

Figure 4
The root invariant RI(�) from Definition 3.1 used for mapping crystal
structures from the CSD in this paper is a continuous and complete
isometry invariant of all two-dimensional lattices.

Figure 1
For almost any perturbation of atoms, the symmetry group and any
reduced cell (even its volume) discontinuously change, which justifies a
continuous classification.

Figure 2
The deformation of the basis v1 = (1, 0), v2 = (�t, 2) for t 2 [0, 1] defines a
continuous loop of lattices. The basis v1, v2 is reduced for t 2 ½0; 1

2Þ but
after t ¼ 1

2 switches to a non-equivalent (up to rigid motion) reduced basis
v1, v0 = (t � 1, �2).



(i) First axiom: d(�, �0) = 0 if and only if � ffi �0 are

isometric;

(ii) Symmetry axiom: d(�, �0) = d(�0, �) for any lattices

�;�0 � R2;

(iii) Triangle axiom: d(�, �0) + d(�0, �00) 	 d(�, �00) for

any lattices �;�0;�00 � R2;

(iv) Lipschitz continuity: there is a constant C such that, for

any lattices �;�0 � R2, if corresponding coordinates of their

basis vectors differ by at most " > 0, then d(�, �0) 
 C".

This paper applies a solution of Problem 1.2 from Kurlin

(2022b) to visualize crystal structures in the CSD on contin-

uous maps. Sections 2 and 3 review the related past work.

Section 4 maps hundreds of thousands of crystal structures in

the CSD. Section 5 explains the geographical metaphor by

mapping the invariant values to a sphere, where every two-

dimensional lattice (up to rigid motion and uniform scaling)

has unique latitude and longitude coordinates.

2. Overview of key concepts and past work on
classifications of lattices

Crystallography traditionally uses a conventional cell to

uniquely represent any periodic crystal (see Hahn et al., 2016).

In the simpler case of three-dimensional lattices, the cell used

is Niggli’s reduced cell (Niggli, 1928). Since the current paper

studies lattices in R2, we give the two-dimensional version

obtained from the three-dimensional definition, which is

derived as a limit of the reduction conditions for a three-

dimensional reduced basis with an orthogonal third vector v3

whose length becomes infinite. For vectors v1 = (a1, a2) and v2

= (b1, b2) in R2, the determinant of the matrix

a1 b1

a2 b2

� �

with the columns v1, v2 is defined as detðv1; v2Þ ¼ a1b2 � a2b1.

Definition 2.1 (reduced cell). For a lattice up to isometry, a

basis and its cell U(v1, v2) are called reduced (non-acute) if |v1|


 |v2| and� 1
2 v2

1 
 v1v2 
 0. Up to rigid motion, the conditions

are weaker: |v1| 
 |v2| and � 1
2 v2

1 < v1v2 

1
2 v2

1, detðv1; v2Þ> 0,

and the new special condition for rigid motion is: if |v1| = |v2|

then v1v2 	 0.

The new conditions for rigid motion did not appear

in the work of de Wolff (2016) because reduced bases were

considered up to isometry including reflections. Any rectan-

gular lattice has a unique (up to rigid motion) reduced cell

a � b, but two ‘potentially reduced’ bases v1 = (a, 0) and v2 =

(0, � b), which are not related by rigid motion for 0 < a < b.

Definition 2.1 chooses only one of these bases, namely v1 =

(a, 0) and v2 = (0, b). So detðv1; v2Þ> 0 defines a right-handed

basis in R2.

Since reduced bases are easy to compute (Křivý & Gruber,

1976), they can be used to define the discrete metric d(�, �0)
taking the same non-zero value (say, 1) for any non-isometric

lattices � 6ffi �0. Discontinuity of a reduced basis up to

perturbations was practically demonstrated in the seminal

work of Andrews et al. (1980). The introduction of Edels-

brunner et al. (2021) said that ‘There is no method for

choosing a unique basis for a lattice in a continuous manner.

Indeed, continuity contradicts uniqueness as we can continu-

ously deform a basis to a different basis of the same lattice’;

see Fig. 2 and a formal proof in Widdowson et al. (2022,

theorem 15). Since a reduced basis is discontinuous under

perturbations, then so is any metric on these reduced bases.

Important advances were made (Andrews & Bernstein,

1988, 2014; McGill et al., 2014; Andrews et al., 2019a; Bernstein

et al., 2022) by analysing complicated boundary cases where

cell reductions can be discontinuous. Since these advances are

specialized for R3, we refer the reader to another paper

(Bright et al., 2021) for a detailed review of reduced bases for

three-dimensional lattices.

Another way to represent a lattice � � Rn is by its Wigner–

Seitz cell (Wigner & Seitz, 1933) or Voronoi domain V(�)

consisting of all points p 2 Rn that are closer to the origin

0 2 � than to all other points of � (Fig. 5). Though V(�)

uniquely determines � up to rotations, almost any tiny

perturbation of a rectangular lattice � converts the rectan-

gular domain V(�) into a hexagon. Hence all combinatorial

invariants (numbers of vertices or edges) of V(�) are

discontinuous, similarly in higher dimensions.

However, comparing Voronoi domains as geometric shapes

by optimal rotation (Mosca & Kurlin, 2020) around a common

centre led to two continuous metrics on lattices up to rigid

motion and uniform scaling. The minimization over infinitely

many rotations was resolved only by finite sampling, so the

exact computation of these metrics is still open. Similar

computational difficulties remain for stronger isometry

invariants of general periodic sets (Anosova & Kurlin,

2021a,b, 2022a,b; Smith & Kurlin, 2022).

Another attempt to produce computable metrics was to

consider distance-based invariants (Widdowson et al., 2022;

Widdowson & Kurlin, 2022) whose completeness was proved

for generic crystals. These invariants helped establish the

crystal isometry principle by experimentally checking that all

periodic crystal structures from the CSD remain non-isometric

after forgetting all chemical information. This principle

implies that all periodic crystals can be studied in the common

crystal isometry space (CRISP) whose version for two-

dimensional lattices is the lattice isometry space LISðR2
Þ.

Though the paper by Conway & Sloane (1992) 30 years ago

aimed for continuous invariants of three-dimensional lattices,

no formal proofs were given even for the isometry invariance.

crystal lattices
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Figure 5
Left: a generic two-dimensional lattice has a hexagonal Voronoi domain
with an obtuse superbase v1, v2, v0 = �v1 � v2, which is unique up to
permutations and central symmetry. Other pictures: isometric superbases
for a rectangular Voronoi domain.



This past work for three-dimensional lattices has been

corrected and extended by Kurlin (2022a).

Kurlin (2022b, proposition 3.10) proves that a reduced basis

from Definition 2.1 is unique (also in the case of rigid motion)

and all reduced bases are in a 1–1 correspondence with obtuse

superbases, which are easier to visualize, especially for n 
 3.

Definition 2.2 (superbase, conorms pij). For any basis

v1, . . . , vn in Rn, the superbase v0, v1, . . . , vn from Conway &

Sloane (1992) includes the vector v0 ¼ �
Pn

i¼1 vi. The

conorms pij = �vivj are the negative scalar products of the

vectors. The superbase is called obtuse if all pij 	 0, so all

angles between the vectors vi, vj are non-acute for distinct

indices i, j 2 {0, 1, . . . , n}. The obtuse superbase is strict if all

pij > 0.

Definition 2.2 uses the conorms pij from Conway & Sloane

(1992), which were also known as negative Selling parameters

(Selling, 1874) and Delaunay parameters (Delaunay et al.,

1934). Lagrange (1773) proved that the isometry class of any

lattice � � R2 with a basis v1, v2 is determined by the positive

quadratic form

Qðx; yÞ ¼ ðxv1 þ yv2Þ
2
¼ q11x2

þ 2q12xyþ q22y2
	 0

for all x; y 2 R;

where q11 ¼ v2
1, q12 = v1v2, q22 ¼ v2

2. The triple ðv2
1; v1v2; v2

2Þ is

also called a metric tensor of (a basis of) �. Any Q(x, y) has a

reduced (non-acute) form with 0 < q11 
 q22 and �q11 
 2q12


 0, which is equivalent to reducing a basis up to isometry.

The bases v1 = (3, 0), v�2 ¼ ð�1;�2Þ generate the mirror

images not related by rigid motion, but define the same form

Q = 9x2
� 6xy + 5y2 satisfying the reduction conditions above.

So quadratic forms do not distinguish mirror images (enan-

tiomorphs). Hence the new conditions for the rigid motion

were needed in Definition 2.1.

Motivated by the non-homogeneity of the metric tensor

(two squared lengths and scalar product), Delaunay (1937)

proposed the homogeneous parameters

p12 ¼ �v1v2 ¼ �q12; p01 ¼ �v0v1 ¼ q11 þ q12;

p02 ¼ �v0v2 ¼ q22 þ q12;

called conorms by Conway & Sloane (1992) (see Definition

2.2). Then any permutation of superbase vectors satisfying v0 +

v1 + v2 = 0 changes p12, p01, p02 by the same permutation of

indices. For example, swapping v1, v2 is equivalent to swapping

p01, p02.

Delaunay’s reduction (Delaunay et al., 1973) proved the key

existence result: any lattice in dimensions 2 and 3 has an

obtuse superbase with all pij 	 0. Section 3 further develops

the Delaunay parameters to show in Section 4 how millions of

lattices from real crystal structures in the CSD are distributed

in continuous spaces of lattices.

3. Homogeneous complete invariants of two-
dimensional lattices up to four equivalences

This section provides a reminder of the lattice classifications in

Theorem 3.4 based on the recent invariants introduced in

Definitions 3.1 and 3.2 from Kurlin (2022b, sections 3–4).

Definition 3.1 [sign(�) and root invariants RI, RIo]. Let B =

{v0, v1, v2} be any obtuse superbase of a lattice � � R2. If �
is mirror-symmetric (achiral), set sign(�) = 0. Otherwise

v0, v1, v2 have different lengths and no right angles, and hence

can be ordered so that |v1| < |v2| < |v0|. Let sign(�) be the sign

of detðv1; v2Þ of the matrix with the columns v1, v2. The root

invariant RI(�) is the triple of the root products rij ¼
ffiffiffiffiffiffiffiffiffiffiffi
�vivj
p

,

which have original units of vector coordinates such as

ångströms and are ordered by their size for distinct indices i, j

2 {0, 1, 2}. The oriented root invariant RIo(�) is RI(�) with

sign(�) as a superscript, which we skip if sign(�) = 0.

We assume that rij = rji. If |v1| < |v2| < |v0|, then r12 < r01 < r02.

If some vi, vj have equal lengths, then rik = rjk for k 6¼ i, j.

Writing RI(�) = (r12, r01, r02) means that |v1| 
 |v2| 
 |v0| for a

suitable indexing of obtuse superbase vectors v0, v1, v2.

Kurlin (2022b, lemma 3.8) proved that RI(�) is an isometry

invariant of �, independent of an obtuse superbase B because

an obtuse superbase of � is unique up to isometry, also up to

rigid motion for non-rectangular lattices. This uniqueness was

missed by Conway & Sloane (1992) and actually fails in R3

(see Kurlin, 2022a).

Definition 3.2 (projected invariants PI, PIo). The root invar-

iants of all lattices � � R2 live in the triangular cone TC in

Fig. 6. The triangular projection TP: TC! QT divides each

coordinate by the size �(�) = r12 + r01 + r02 and projects

RI(�) to ð�rr12; �rr01; �rr02Þ in the quotient triangle QT in Fig. 7.

This triangle can be visualized as the isosceles right-angled

triangle QT ¼ fx; y 	 0; xþ y 
 1g � R2 parameterized by

x ¼ �rr02 � �rr01 and y ¼ 3�rr12. The resulting pair PI(�) = (x, y) is

the projected invariant. The oriented invariant PIo(�) is

obtained by adding the superscript sign(�).

All oriented projected invariants PIo(�) with sign(�) live

in a union of two quotient triangles QT+
[ QT�. These

triangles should be glued along the common subspace of

mirror-symmetric lattices (all non-oblique lattices � � R2),

whose PI(�) belong to the boundary of QT. Fig. 7 (right) glues

4 Matthew Bright et al. � Geographic style maps for two-dimensional lattices Acta Cryst. (2023). A79, 1–13

crystal lattices

Figure 6
Left: the triangular cone TC = {ðr12; r01; r02Þ 2 R

3
j 0 
 r12 
 r01 
 r02

6¼ 0} is the space of all root invariants, see Definition 3.1. Middle: TC
projects to the quotient triangle QT representing all two-dimensional
lattices up to isometry and uniform scaling. Right: QT is parameterized by
x ¼ �rr02 � �rr01 2 ½0; 1Þ and y ¼ 3�rr12 2 ½0; 1�.



the hypotenuses of QT� and indicates how to glue the

remaining sides. We get a punctured sphere due to the

excluded vertex (1, 0).

Example 3.3 (subspaces of Bravais classes in QT).

(tp) The square lattice �4 � R
2 with a unit cell a � a

has RI(�4) = (0, a, a) 2 TC projected by TP to

ð�rr12; �rr01; �rr02Þ ¼ ð0;
1
2 ;

1
2Þ. By Definition 3.2 the projected invar-

iant PIð�4Þ ¼ ðx; yÞ = ð�rr02 � �rr01; 3�rr12Þ = ð0; 0Þ 2 QT [see Fig. 7

(left)]. So the Bravais class (tp) of all square (tetragonal)

lattices �4 � R
2 is represented by the bottom-left vertex (0, 0)

in the quotient triangle QT, identified with the top-right vertex

of the quotient square QS in Fig. 7 (right).

(hp) The hexagonal lattice �6 with a minimum inter-

point distance a has the root invariant RIð�6Þ =

ða=
ffiffiffi
2
p
; a=

ffiffiffi
2
p
; a=

ffiffiffi
2
p
Þ projected by TP to ð13 ;

1
3 ;

1
3Þ. The

projected invariant is PI(�6) = (x, y) = (0, 1) 2 QT [see Fig. 7

(left)]. The Bravais class (hp) of all hexagonal lattices �6 � R
2

is represented by the top-left vertex (0, 1) in the quotient

triangle QT, identified with the bottom-right vertex of the

quotient square QS.

(op) Any rectangular lattice � with a unit cell a � b for

0 < a < b has the obtuse superbase v1 = (a, 0), v2 = (0, b), v0 =

(�a, �b) [see Fig. 8 (left)]. Then RI(�) = (0, a, b) and

PIð�Þ ¼ ½ðb� aÞ=ðbþ aÞ; 0� belongs to the horizontal side of

QT, which represents the Bravais class (op). We approach the

excluded vertex (1, 0) as b! +1.

(oc) Any centred rectangular lattice � with a conventional

unit cell 2a � 2b for 0 < a < b has the obtuse superbase v1 =

(2a, 0), v2 = (�a, b), v0 = (�a, �b) (see Fig. 8). Then r01 = a
ffiffiffi
2
p

= r02 and r12 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

. If b 
 a
ffiffiffi
3
p

, then RI(�) =

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

; a
ffiffiffi
2
p
; a

ffiffiffi
2
p
Þ and

PIð�Þ ¼ 0;
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

2a
ffiffiffi
2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

 !

belongs to the vertical (orange) edge of QT. This vertical

edge is the shortest straight-line path between the vertices

(x, y) = (0, 0) representing the tetragonal and hexagonal

Bravais classes, where a = b and b ¼ a
ffiffiffi
3
p

, respectively.

Hence the subspace of centred rectangular lattices for

b 
 a
ffiffiffi
3
p

can be considered as having the symmetries of both

hexagonal and square lattices. If b> a
ffiffiffi
3
p

, then RI(�) =

ða
ffiffiffi
2
p
; a

ffiffiffi
2
p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

Þ and

PIð�Þ ¼
3a

ffiffiffi
2
p

2a
ffiffiffi
2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

� a
ffiffiffi
2
p

2a
ffiffiffi
2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

 !

belongs to the hypotenuse x + y = 1 of the triangle QT. The

open vertical edge and open hypotenuse of QT represent the

Bravais class oc of all centred rectangular lattices.

The companion paper (Kurlin, 2022b) proves the following

classifications of two-dimensional lattices up to four equiv-

alences, fulfilling the invariance and completeness conditions.

Theorem 3.4 [proved by Kurlin (2022b, theorem 4.2, corollary

4.6)]. For a lattice � � R2,

(a) the invariant RI(�) uniquely identifies � up to isometry,

(b) the invariant RIo(�) uniquely identifies � up to rigid

motion,

(c) the invariant PI(�) uniquely identifies � up to isometry

and uniform scaling,

(d) the invariant PIo(�) uniquely identifies � up to rigid

motion and uniform scaling.

Each part in Theorem 3.4 can be rephrased as a two-

directional criterion. For example, part (a): any lattices

�;�0 � R2 are isometric if and only if RI(�) = RI(�0). The

first (only if) direction means that if �ffi�0 are isometric, then

RI(�) = RI(�0), so RI(�) is an isometry invariant taking the

same value on all isometric lattices. The second (if) direction

means that if RI(�) = RI(�0), then � ffi �0 are isometric.

4. Mapping millions of two-dimensional lattices
extracted from crystal structures in the CSD

For any periodic crystal structure from the CSD, which has full

geometric data of its lattice � � R3, we extract three two-

dimensional lattices generated by three pairs {v2, v3}, {v1, v3},

{v1, v2} of given basis vectors of �. So the CSD provides a huge

collection of 2.6 million two-dimensional lattices, which our

reduction approach maps to the triangle QT in under 1 h on a

standard laptop.

Fig. 9 shows all resulting 2.6 million lattices in QT. Only

about 55% of all lattices have Bravais classes oc, op, hp, tp.

The remaining 45% of lattices are oblique, with Bravais class

mp. These occupy almost the full quotient triangle QT,

although we see a somewhat greater density close to subspaces

crystal lattices
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Figure 8
Left: any rectangular lattice � with a unit cell a � b has the obtuse
superbase B with v1 = (a, 0), v2 = (0, b), v0 = (�a, �b), see Example 3.3
(op). Other lattices � have a rectangular cell 2a � 2b and an obtuse
superbase B with v1 = (2a, 0), v2 = (�a, b), v0 = (�a, � b). Middle:
RI(�) = ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

; a
ffiffiffi
2
p
; a

ffiffiffi
2
p
Þ, a 
 b 
 a

ffiffiffi
3
p

. Right: RI(�) =
ða

ffiffiffi
2
p
; a

ffiffiffi
2
p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

Þ, a
ffiffiffi
3
p

 b, see Example 3.3 (oc).

Figure 7
Left: all projected invariants PI(�) live in the quotient triangle QT
parameterized by x ¼ �rr02 � �rr01 2 ½0; 1Þ and y ¼ 3�rr12 2 ½0; 1�. Right:
mirror images (enantiomorphs) of any oblique lattice are represented
by a pair (x, y)$ (1 � y, 1 � x) in the quotient square QS = QT+

[ QT�

symmetric in the diagonal x + y = 1.



representing higher-symmetry lattices – especially around

hexagonal and rectangular centred lattices.

The gap of about two pixels near the horizontal edge in Fig.

9 corresponds to �rr12 ¼ 0:01. The relevant lattices have basis

vectors v1, v2 whose angle is perturbed from 90
 by less than

0.03
. The CSD has only 399 such lattices and �rr12 > 0:005 for

all but one of them. After removing all non-oblique lattices

represented by root invariants along the boundary of QT, the

map in Fig. 10 shows more clearly that all oblique lattices

extracted from the CSD occupy the triangle QT without any

gaps.

The heat map of rectangular lattices in Fig. 11 (top) has two

high-concentration (black) pixels at a’ 3.5 Å arising from 386

near-identical primitive monoclinic crystal structures of �-

oxalic acid dihydrate. This molecule was used as a benchmark

for the calculation of electron densities since its crystal-

lographic properties were thoroughly documented by Stevens

& Coppens (1980). Hundreds of publications have since

generated and deposited further refinements of its structural

determination.

In the heat map of centred rectangular lattices in Fig. 11

(bottom), the most prominent feature is the hottest area in the

region where the shortest side length is between 2.5 and 5 Å.

We also see a visible line b ¼
ffiffiffi
2
p

a of high-concentration
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Figure 10
The normal-scale heat map in QT of all two-dimensional oblique lattices
from CSD crystals. After removing mirror-symmetric lattices on the
boundary of QT, we can better see the tendency towards hexagonal
lattices at the top-left corner (0, 1) 2 QT.

Figure 11
Heat maps of parameters (a, b) in ångströms. Top: rectangular lattices
with primitive unit cells a � b in N = 1 268 065 crystal structures in the
CSD. Bottom: centred rectangular lattices with conventional cells 2a � 2b
in N = 150 167 crystal structures in the CSD.

Figure 9
The heat map in QT of all two-dimensional lattices extracted from
870 000+ crystal structures in the CSD. The colour of each pixel indicates
(on the logarithmic scale) the number of lattices whose projected
invariant PIð�Þ = ðx; yÞ = ð�rr02 � �rr01; 3�rr12Þ belongs to this pixel. The
darkest pixels represent rectangular lattices on the bottom edge of QT.



pixels. This line represents two-dimensional lattices in body-

centred cubic lattices, where the ratio of side lengths is
ffiffiffi
2
p

.

This ratio was reported among preferred values for lattice

length ratios in dimension 3 by de Gelder & Janner (2005).

Another high-concentration pixel represents 130 structures of

a standard test molecule (hexamethylenetetramine), which

was frequently used in the investigation of lattice vibrations

(Becka & Cruickshank, 1963).

Hexagonal and square lattices are characterized by the

inter-point distance a. Fig. 12 shows distributions and

preferred values of a (in Å) among CSD lattices.

5. Other complete invariants and a spherical map of
two-dimensional lattices

In comparison with other complete invariants, RI(�) has the

advantage of homogeneity so that any permutation � of

(indices of) superbase vectors v0, v1, v2 permutes the three

root products accordingly: rij 7! r�ðiÞ�ðjÞ. The metric tensor

MT ¼ ðv2
1; v1v2; v2

2Þ including the coefficients of the form

Q�(x, y) = q11x2 + 2q12xy + q22y2 representing � is not

homogeneous in the above sense. Taking square roots

gives the quadratic invariant QI(�) = (�11, �12, �22) =

ð
ffiffiffiffiffiffi
q11

p
;
ffiffiffiffiffiffiffiffiffiffi
�q12

p
;
ffiffiffiffiffiffi
q22

p
Þ in the units of basis coordinates. The

quadratic invariant QI(�) is complete up to isometry by

Theorem 3.4(a).

In the isosceles triangle QT, continuous metrics and chiral

distances have simple formulae in the work of Kurlin (2022b,

sections 5–6) for the coordinates x ¼ �rr02 � �rr01, y ¼ 3�rr12 but can

be now re-written for any coordinates on LISðR2
Þ [see the

earlier non-isosceles triangles of Engel et al. (2004, Fig. 1.2 on

p. 82) and Zhilinskii (2016, Fig. 6.2)].

Since the quotient square QS = QT+
[ QT�with identified

sides is a punctured sphere, it is natural to visualize QS as the

round surface of Earth with QT� as the north/south hemi-

spheres separated by the equator along their common

boundary of QT represented by projected invariants PI(�) of

all mirror-symmetric lattices �.

We can choose any internal point of the quotient triangle

QT as the north pole. The most natural choice is the incentre

P+ (pole), the centre of the circle inscribed into QT+ because

the rays from P+ to the vertices of QT+ equally bisect the

angles 90
, 45
, 45
. The incentre of QT+ has the coordinates

(x, x), where x ¼ 1� ð1=
ffiffiffi
2
p
Þ ¼ 1=ð2þ

ffiffiffi
2
p
Þ. The lattice �þ2

with the projected invariant PIð�þ2 Þ ¼ ðx; xÞ has the basis v1’

(1.9, 0), v2 ’ (�0.18, 3.63) inversely designed by Kurlin

[2022b, example 4.10 (�2)].

Definition 5.1 (spherical map SM: QS! S2).

(a) The spherical map SM sends the incentre P+ of QT to

the north pole of the hemisphere HS+ and the boundary @QT

to the equator of HS+ [see Fig. 13 (middle)]. Linearly map the

line segment between P+ and any point (x, y) in the boundary

@QT to the shortest arc connecting the north pole SM(P+) to

SM(x, y) in the equator of HS+. Extend the spherical map to

SM: QS! S2 by sending any pair of invariants PIo(��) with

sign(��) = �1 to the northern/southern hemispheres of the

two-dimensional sphere S2, respectively.

(b) For any lattice � � R2, the latitude ’(�) 2 [�90
, + 90
]

is the angle from the equatorial plane EP of S2 to the radius-

vector to the point SM[PIo(�)] 2 S2 in the upwards direction.

Let v(�) be the orthogonal projection of this radius-vector to

EP. Define the Greenwich point as G ¼ ð0;
ffiffiffi
2
p
� 1Þ 2 @QT in

the line through P+ and (1, 0). This G represents all centred

rectangular lattices with a conventional unit cell 2a � 2b

whose ratio r ¼ b=a can be found from Example 3.3:

ffiffiffi
2
p
� 1 ¼

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

2a
ffiffiffi
2
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p :

Setting s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1
p

, we get
ffiffiffi
2
p
� 1 = 3s=ð2

ffiffiffi
2
p
þ sÞ,

s ¼ ð4� 2
ffiffiffi
2
p
Þ=ð4�

ffiffiffi
2
p
Þ, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1
p

’ 1.1. The Greenwich

meridian is the great circle on the sphere S2 passing through

the point SM(G) in the equator E. The longitude �(�) 2

(�180
, 180
] is the anticlockwise angle from the Greenwich

plane through the Greenwich meridian to the vector v(�)

above.

For lattices with PI(�) in the straight-line segment between

the excluded vertex (1, 0) and the incentre P+, we choose the

crystal lattices
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Figure 12
The histograms of minimum inter-point distances a in ångströms.



longitude � = +180
 rather than �180
. Proposition 5.2

computes �(�), ’(�) via PI(�) = (x, y) and is proved in

Appendix A.

Proposition 5.2 (formulae for SM). For any lattice � � R2

with PI(�) = (x, y) 2 QT, if x 6¼ t ¼ 1� ð1=
ffiffiffi
2
p
Þ, then set

 ¼ arctan½ðy� tÞ=ðx� tÞ�, otherwise  = sign(y � t)90
.

The longitude of the lattice � is

�ð�Þ ¼
 þ 22:5
 if x< t;
 � 157:5
 if x 	 t;  	 �22:5
;
 þ 202:5
 if x 	 t;  
 �22:5
:

8<
: ð1Þ

The latitude is

’ð�Þ ¼ signð�Þ �

x
ffiffi
2
pffiffi
2
p
�1

90
 if �ð�Þ 2 ½�45
;þ67:5
�;
y
ffiffi
2
pffiffi
2
p
�1

90
 if �ð�Þ 2 ½þ67:5
;þ180
�;
1�x�yffiffi

2
p
�1

90
 if �ð�Þ 2 ½�180
;�45
�:

8>><
>>:

ð2Þ

The incentres P� 2 QT� have  = 0 and ’ = �90
,

respectively, � is undefined.

Example 5.3 (prominent lattices). Any mirror-symmetric

lattice � � R2 has sign(�) = 0, and hence belongs to the

equator E of S2 and has ’(�) = 0 by (2). Any square lattice

�4 with PI(�4) = (0, 0) has �ð�4Þ ¼ arctan 1þ 22:5
 ¼ 67:5


by (1). Any hexagonal lattice �6 with PI(�4) = (0, 1) has

�ð�4Þ ¼ arctan½1=ð1�
ffiffiffi
2
p
Þ� þ 22:5
 ¼ �45
. Any rectan-

gular lattice � with PIð�Þ ¼ ½1� ð1=
ffiffiffi
2
p
Þ; 0� has �(�) = �90


+ 202.5
 = 112.5
. Any centred rectangular lattice �
with PIð�Þ ¼ ð12 ;

1
2Þ at the midpoint of the diagonal of QT

has �ð�Þ ¼ arctan 1� 157:5
 ¼ �112:5
. Any Greenwich

lattice �G with PI(�G) = G = ð0;
ffiffiffi
2
p
� 1Þ has �ð�GÞ =

arctanð1�
ffiffiffi
2
p
Þ þ 22:5
 ¼ 0.

The north pole represents the incentre P+ whose pixel

contains 230 lattices in Fig. 10 but appears sparsely populated

in Fig. 14 because this incentre pixel is split into many 1 � 1
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Figure 13
Top: in QT+, the Greenwich line goes from the ‘empty’ point (1,0)
through incentre P+ to the point G ¼ ð0;

ffiffiffi
2
p
� 1Þ. Middle: the hemi-

sphere HS+ has the north pole at P+, the equator @QT+ of mirror-
symmetric lattices. Bottom: the longitude � 2 (�180
, + 180
]
anticlockwise measures angles from the Greenwich line, the latitude ’
2 [�90
, + 90
] measures angles from the equator to the north pole.

Figure 14
The heat map of two-dimensional lattices from crystal structures in the
CSD on the northern hemisphere. The radial distance is the latitude ’ 2
[0
, 90
]. Top: all N = 2 191 887 lattices with sign(�) 	 0, ’ 	 0. Bottom:
all N = 741 105 oblique lattices with sign(�) > 0, ’ > 0.



curved ‘pixels’ of a much lower concentration. The high

concentration near the point representing hexagonal lattices is

visible in Figs. 14, 15 as dark pixels near the longitude � =

�45
. Where non-oblique lattices are included, we see the

high concentrations along the borders of QT, with primitive

rectangular lattices appearing as a dark thick arc on the

equator for � 2 [67.5
, 180
).

The heat maps show a hexagonal ‘ridge’ along the meri-

dional arc at � = �45
 in Figs. 14 and 15, which appears as a

round arc in Figs. 16 and 17. The concentration of exact square

and rectangular lattices is even higher (dark pixels for the

Bravais classes tp and op), but there are fewer lattices close to

these classes possibly because manual or automatic adjust-

ments are easier for angles close to 90
 than to 60
.

6. Main conclusions and motivations for a continuous
crystallography

The heat maps in Figs. 9–10 and 14–17 visualize for the first

time 2.6 million two-dimensional lattices in real crystal struc-

tures from the CSD. The preprint of Bright et al. (2021)

extends this approach to three-dimensional lattices, but there

is a growing database of real and theoretical two-dimensional

lattice structures with potentially interesting properties

(Mounet & Gibertini, 2020) for which two-dimensional lattice

invariants may have direct utility. The maps indicate that

lattices occur naturally in continuous distributions, and their

geometry can be investigated by continuous invariant-based

classification in addition to using discrete symmetry groups.

crystal lattices

Acta Cryst. (2023). A79, 1–13 Matthew Bright et al. � Geographic style maps for two-dimensional lattices 9

Figure 16
The heat map of two-dimensional lattices from crystal structures in the
CSD on the western hemisphere. Angles on the circumference show the
latitude ’ 2 [�90
, 90
]. Top: N = 1 100 580 lattices with � 2 (�180
, 0
].
The hexagonal lattice at � =�45
 and the centred rectangular lattice at �
= �112.5
 are marked on the horizontal arc (western half-equator).
Bottom: all N = 932 626 oblique lattices with � 2 (�180
, 0
] and ’ 6¼ 0.

Figure 15
The heat map of two-dimensional lattices from crystal structures in the
CSD on the northern hemisphere. The radial distance is the latitude ’ 2
[0
, 90
]. Top: all N = 1 854 209 lattices with sign(�) 
 0, ’ 
 0. Bottom:
all N = 406 930 oblique lattices with sign(�) < 0, ’ < 0.



The continuous approach has the added advantage of more

easily spotting structures that are geometrically nearly iden-

tical, but where small variances in crystallization conditions

have led to slight structure perturbations which disrupt higher

lattice symmetries. The Python code for new invariants is

available at https://github.com/MattB-242/Lattice_Invariance.

Using a geographic analogue, the recent isometry invariants

create complete and continuous maps for efficient navigation

in the lattice isometry space LISðR2
Þ, which can be magnified

as satellite images and explored at any desirable resolution.

Since each invariant is a point in a space on which various

metrics can be defined, this representation leads to a contin-

uous ‘distance’ between two lattices based on their separation

in LISðR2
Þ and also a continuous measure of ‘dissymmetry’ as

the closest distance to the subspace corresponding to lattices

with higher symmetry (see Kurlin, 2022b).

The four non-generic Bravais classes of two-dimensional

lattices are lower-dimensional subspaces in LISðR2
Þ whose

separate maps in Fig. 11 and 12 have no intermediate gaps and

include sparse or empty regions only for small or very large

values of cell parameters.

Using a biological analogue, crystallography previously

took a similar approach to the classical taxonomy, dividing

lattices into an increasingly complex sequence of discrete

categories based on symmetries as they divided organisms

according to physical characteristics; see a comprehensive

review by Nespolo et al. (2018).

The new area of continuous crystallography uses the

geometric properties of the lattice itself to continuously clas-

sify an individual lattice in as granular a manner as we like, in a

manner akin to the modern use of genetic sequences and

markers to classify organisms. Indeed, since the root invariant

RI(�) of a lattice � is complete, this RI(�) could be said to

represent the DNA of �. Even better than the real DNA, any

two-dimensional lattice can be explicitly built up from RI(�)

[see Kurlin (2022b), proposition 4.9].

The complete root invariant from Definition 3.1 extends to

a three-dimensional lattice as follows. For any three-

dimensional lattice, depending on its Voronoi domain, all

obtuse superbases fvig
3
i¼0 with v0 + v1 + v2 + v3 = 0 are

described by Kurlin (2022a, lemmas 4.1–4.5). Any generic

three-dimensional lattice has a unique (up to isometry) obtuse

superbase whose root products rij =
ffiffiffiffiffiffiffiffiffiffiffi
�vivj
p

can be considered

as labels on the edges of a three-dimensional tetrahedron or

written in the matrix

r23 r13 r12

r01 r02 r03

� �
:

Permutations of four superbase vectors induce 4! = 24

permutations of the above six root products. Other non-

generic cases require other permutations, which were not

previously considered by Andrews et al. (2019b), to guarantee

a complete invariant of all three-dimensional lattices [in

Kurlin (2022a, theorem 6.3)]. Maps of three-dimensional

lattices extracted from crystal structures in the CSD appear in

the work of Bright et al. (2021).

Working towards a complete materials genome, Widdowson

et al. (2022, section 7) introduced the pointwise distance

distribution (PDD). This PDD invariant distinguished all

periodic point sets after a tiny perturbation. More than 200

billion pairwise comparisons of all 660 000+ periodic crystal

structures in the CSD over 2 days on a modest desktop PC

detected five pairs of isometric duplicates [see Widdowson et

al. (2022), section 7], where two crystals are geometrically

identical to the last decimal place in all data including struc-

ture factors but one atom is replaced with a different one: Cd

with Mn in the pair HIFCAB versus JEPLIA. These pairs are

under investigation by five journals for data integrity. (Near-

)duplicates in the CSD can be recognized only by a continuous

invariant taking close values for close crystals. The CSD
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Figure 17
The heat map of two-dimensional lattices from crystal structures in the
CSD on the eastern hemisphere. Angles on the circumference show the
latitude ’ 2 [�90
, 90
]. Top: all N = 1 511 307 lattices with � 2 [0
, 180
),
the square lattice point at � = 67.5
 and the rectangular lattice at � =
112.5
 are marked on the horizontal arc (eastern half-equator). Bottom:
all N = 215 409 oblique lattices with � 2 [0
, 180
), ’ 6¼ 0.



entries DEBXIT01, . . . , DEBXIT06 represent two poly-

morphs: four (near-)duplicates of T2-� and two (near-)dupli-

cates of T2-� reported in our past work (Pulido et al., 2017).

Zhu et al. (2022) predicted and synthesized new material

based on PDD invariants.

APPENDIX A
A proof of Proposition 5.2 and plots of orientation-
aware invariants

(a) For any point P = (x, y) 2 QT, the vector PþP
��!

has coor-

dinates (x � t, y � t), where P+ = (t, t) is the incentre (the

centre of the inscribed circle) of the quotient triangle QT

and t ¼ 1� ð1=
ffiffiffi
2
p
Þ [see Fig. 13 (top)]. Recall that, for any

b 2 R, the function arctanðbÞ outputs a unique angle �
2 (�90
, 90
) such that tanð�Þ ¼ b. If x > t, then  =

arctan½ðy� tÞ=ðx� tÞ� 2 ð�90
; 90
Þ is the anticlockwise angle

from the positive x direction (with the origin at P+) to the

vector PþP
��!

.

For x = t, the limit values of arctan give  = sign(y � t)90
.

For x < t, the anticlockwise angle from the positive x direction

to PþP
��!

is  + 180
. For example, the Greenwich vector G
!

from the excluded vertex (1, 0) to G ¼ ð0;
ffiffiffi
2
p
� 1Þ 2 QT has

the anticlockwise angle  + 180
 = 157.5
 from the positive x

direction because

ffiffiffi
2
p
� 1� t

�t
¼

ffiffiffi
2
p
� 1� 1� 1ffiffi

2
p

� �
1ffiffi
2
p � 1

¼
3� 2

ffiffiffi
2
p

1�
ffiffiffi
2
p ¼ 1�

ffiffiffi
2
p

and arctanð1�
ffiffiffi
2
p
Þ ¼ �22:5
. The anticlockwise angle from

the x axis to PþP
��!

is

� ¼
 if x> t;
 þ 180
 if x< t;
signðy� tÞ90
 if x ¼ t; y 6¼ t:

8<
:

In all cases above, since the Greenwich vector G
!

was chosen

as the 0-th meridian, the anticlockwise angle from G
!

to PþP
��!

is

the longitude � = � � 157.5
. For example, any centred

rectangular lattice � with PIð�Þ ¼ ðx; yÞ ¼ ð12 ;
1
2Þ has

 ¼ arctan½ðy� tÞ=ðx� tÞ� = arctan 1 = 45
 ¼ � and longitude

� = �� 157.5
 =�112.5
. If �� 157.5
 is outside the expected

range of � 2 (�180
, 180
], we add or subtract 360
. Any

hexagonal lattice �6 with PI(�6) = (0, 1) has

 ¼ arctan
y� t

x� t
¼ arctan

1� 1� 1ffiffi
2
p

� �
1ffiffi
2
p � 1

¼ arctan
1

1�
ffiffiffi
2
p ¼ �67:5
;

� =  + 180
 = 112.5
 and longitude � = � � 157.5
 = �45
.

Any square lattice �4 with PI(�6) = (0, 0) has  =

arctan½ðy� tÞ=ðx� tÞ� ¼ arctan 1 ¼ 45
, � =  + 180
 = 225


and longitude � = � � 157.5
 = 67.5
. Equation (1) is split into

three subcases only to guarantee the range of a longitude � 2

(�180
, 180
] for the anticlockwise angle � � 157.5
 from G
!

to PþP
��!

, where � is computed above.

(b) For a fixed longitude �(�), the projected invariant

PI(�) varies along the line segment L at a fixed angle from the

incentre P+ to the boundary @QT. Equation (2) is split into

three subcases according to the three boundary edges of QT.

Consider the vertical edge between hexagonal and square

lattices, where �(�) 2 [�45
, 67.5
]. The latitude ’(�) is

proportional to the ratio in which the point PI(�) = (x, y)

splits the line segment L from P+ to the vertical edge. The

crystal lattices
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Figure 18
Heat maps of two-dimensional lattices derived from crystal structures in
the CSD in the quotient square QS. Each pixel in the map represents a
0.005 � 0.005 interval of projected form invariant value, where each such
value uniquely represents a lattice up to rigid motion only. Top: N =
2 611 887 lattices derived from the CSD. Projected invariants for
primitive and centred rectangular lattices are duplicated at the
boundaries of the quotient square – indicative positions of non-trivially
symmetric lattices are shown. Bottom: all N = 1 165 348 oblique (non-
mirror-symmetric) lattices derived from the CSD.



endpoint x = 0 means that SM[PI(�)] is in the equator with

’ = 0. The endpoint x ¼ t ¼ 1� ð1=
ffiffiffi
2
p
Þ means that PI(�) =

P+ is in the centre whose image SM(P+) is the north pole with

’ = 90
. The linear map between these extreme cases gives

’ð�Þ ¼ ðx=tÞ90
 ¼ ½x
ffiffiffi
2
p
=ð

ffiffiffi
2
p
� 1Þ�90
. The case of the hori-

zontal edge of QT gives a similar ’ after replacing x with y.

The hypotenuse of QT, where x + y = 1, is also similar as the

incentre

Pþ ¼ ðx; yÞ ¼ 1�
1ffiffiffi
2
p ; 1�

1ffiffiffi
2
p

� �
has the latitude

’ð�Þ ¼
1� x� yffiffiffi

2
p
� 1

90
 ¼
1� 2 1� 1ffiffi

2
p

� �
ffiffiffi
2
p
� 1

90
 ¼ 90


as expected. The factor sign(�) in (2) guarantees a symmetry

of SM: QS! S2 in the equator. &

In the main body of this paper, we show heat maps of

orientation-unaware projected invariants, which clearly

demonstrate the way that lattices generated from the CSD

distribute through the lattice invariant space without gaps. Fig.

18 shows plots of orientation-aware projected invariants

PIo(�) for the same data set.

In both plots, we see an additional apparent non-smooth

jump across the diagonal representing higher-symmetry

lattices, so that there is some apparent favouring of positive

chirality among two-dimensional lattices. This is an artefact of

the interaction between vectors in the initial CSD data, and

our consistently ordered selection of pairs from those vectors,

and should not be read as a real physical effect. We also note

that there is a much lower relative concentration, apparent

from the lightness of the colour of each pixel, in the standard

plot of oblique lattices. In this case the oxalic acid structures

mentioned in the main body of the paper all have consistent

chirality and remain below the diagonal of the quotient

square, while the lattices in any other pixel split between each

half of the plot and therefore have much lower relative counts.
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Engel, P., Michel, L. & Sénéchal, M. (2004). Lattice Geometry.
Technical Report IHES-P-2004-45. IHES, Bures-sur-Yvette,
France.

Gelder, R. de & Janner, A. (2005). Acta Cryst. B61, 296–303.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta

Cryst. B72, 171–179.
Hahn, Th., Looijenga-Vos, A., Aroyo, M. I., Flack, H. D., Momma, K.

& Konstantinov, P. (2016). International Tables for Crystallography,
Vol. A, edited by M. I. Aroyo, Chapter 2.1, pp. 142–174. Chichester:
Wiley.
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