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The recent diversification of macromolecular crystallographic experiments

including the use of pink beams, convergent electron diffraction and serial

snapshot crystallography has shown the limitations of using the Laue equations

for diffraction prediction. This article gives a computationally efficient way of

calculating approximate crystal diffraction patterns given varying distributions

of the incoming beam, crystal shapes and other potentially hidden parameters.

This approach models each pixel of a diffraction pattern and improves data

processing of integrated peak intensities by enabling the correction of partially

recorded reflections. The fundamental idea is to express the distributions as

weighted sums of Gaussian functions. The approach is demonstrated on serial

femtosecond crystallography data sets, showing a significant decrease in the

required number of patterns to refine a structure to a given error.

1. Introduction

Macromolecular crystallography is most commonly performed

using a monochromatic X-ray or electron source and with at

most a few crystals. In conventional rotation measurements

each crystal is rotated, exposing it to the beam over a range of

about 180�, integrating the diffraction over small angular

wedges. Under those circumstances the Laue equations have

been sufficient approximations for the diffraction condition.

They stipulate that the differences �k between the wave-

vector of the diffracted beam kout and the wavevector of the

incident beam kin are integer linear combinations of the

reciprocal unit-cell vectors a�, b� and c�:

a�0 a�1 a�2
b�0 b�1 b�2
c�0 c�1 c�2

0
@

1
A�k ¼

h

k

l

0
@

1
A: ð1Þ

Given the unit-cell parameters, initial crystal orientation and

experimental geometry, the equation can be rearranged to

give the crystal orientation and the point on the detector

where a given reflection can be observed most intensely.

Conversely, for a random orientation of the crystal, the

probability of any reflection (except the direct beam) being in

its optimal diffraction condition is zero because the integer

indices on the right side of equation (1) are an infinitesimal

subset of the attainable rational vectors on the left side.

Experimentally however, there is a neighbourhood close to

the ideal diffraction condition where diffraction can be

observed at reduced intensity even though the Laue equations

are not satisfied. Not knowing which reflections will be

observable for a given orientation, and how intensely, is

known as the partiality problem. Several definitions of parti-
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ality are conceivable. In the following the partiality of an

observation will be the ratio between the measured intensity

and the maximally attainable intensity for a given crystal and

beam but changing the orientation of the crystal. This paper

introduces a way to estimate that neighbourhood and the

reduction in intensity, thereby addressing the partiality

problem computationally.

Exposing the crystal to the radiation during rotation and

recording images over small angular wedges solves this

problem too, which is why the rotation method was adopted in

the first place. The rotation ensures that almost all reflections

within the observable resolution range of the diffractometer

will reach their optimum at some point during the rotation and

can be fully recorded. The process of calculating any or all

aspects of diffraction patterns (peak position, shape, intensity

or full diffraction patterns), given unit-cell parameters and

experimental geometry, is called ‘prediction’ in the context of

macromolecular crystallography data processing. For mono-

chromatic rotational crystallography the deviations between

measured and predicted peak positions are usually small,

except for reflections whose reflection condition is not

affected significantly by the rotation. (Those few measure-

ments are typically discarded.) The rotation of the crystal

during the exposure about a known axis and with a known

angular increment acts as a strong constraint for parameter

estimation during the processing of rotational crystallographic

data. Using this information, the intensity of a reflection can

be integrated and corrected to yield the corresponding

squared structure-factor amplitude.

In the last decades in macromolecular crystallography,

methods have been employed, which, for various reasons,

deviate from the rotational crystallography setup in significant

ways. The most notable among these methods is serial crys-

tallography, where crystals are recorded once each and

consequently many crystals are needed for a complete data set

(Schlichting, 2015; Spence, 2017). An important subclass is

serial snapshot crystallography, where the crystals are illumi-

nated without rotation. Without the rotation it becomes

indispensable to consider not just the ideal diffraction condi-

tion, but the partial intensity that can be observed when close

enough to the ideal diffraction condition.

We know there is a steep fall-off of intensity with deviation

from the exact condition in a monochromatic experiment with

well ordered crystals. This steep fall-off makes it easy to define

a small range that contains almost all observations of the same

structure factor and hardly any observations of anything else,

even without knowing the shape of the fall-off. Computing the

average of these observations with unknown partiality is

called Monte Carlo integration in the context of serial crys-

tallography. It has been used to work around the problem of

unknown partial intensities with great success (Kirian et al.,

2011). However, for the Monte Carlo integration to converge

to an average with a small standard deviation, each reflection

needs to be measured multiple times. This approach assumes

that the partialities follow the same distribution, with finite

first and second moments, for all reflections of a given reso-

lution shell. From this assumption it follows that the average

converges to a value proportional to the non-partial intensity,

that is the structure-factor amplitudes squared. Assuming

polarization correction has been applied before averaging, no

additional correction factors are needed, unless the inclusion

criterion varies or fails to capture a significant portion of the

intensity, and in fact no Lorentz factor is applied in practice.

The development of new methods has not stopped there,

however. Serial snapshot crystallography has since been

carried out with polychromatic, or so-called pink beam,

sources (Meents et al., 2017), electron beams (Bücker et al.,

2020) and mosaic crystals. More exotic experiments are surely

already planned. In these more general cases the Laue

equations are not sufficient, because inaccurate predictions of

the peak positions and elongated peak shapes cannot neces-

sarily be overcome by just measuring several times more data

to make use of Monte Carlo integration. The Laue equations

assume point-like peak shapes. In monochromatic experi-

ments the peaks are narrow and compact, so small integration

radii or boxes are typically employed, and the Laue equations

are sufficient. But when two or more different and equally

significant distributions are at play, elongated peak shapes can

be observed.

Fig. 1 depicts the distributions that are assumed to be

relevant and their effect on the diffraction geometry. In

polychromatic experiments the distribution of wavelengths,

the width of which is called bandwidth, together with a

distribution in crystal orientation, called mosaicity, can lead to

elongated peak shapes. The other relevant distributions

affecting the diffraction are the size and shape of the crystal
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Figure 1
The geometric construction visualizing the construction of the covariance
matrices of the distributions of diffractive power in reciprocal space and
the volume probed by an incident beam. The arrows indicate the
components, akin to error bars, that the different distributions contribute
to the covariance matrix in a 2D cut. The same contributions have a
different effect on kin, �k and kout, and where they have an effect they are
indicated with the same colour as where they were introduced. The
distribution of wavelengths in the incident beam leads to a distribution of
lengths of kin; the standard deviation is drawn with purple arrows. The
distribution of incident-beam directions leads to different starting points
of kin in the Ewald construction; its standard deviation is drawn in red.
The scattering power of the crystal is smeared rotationally by mosaicity,
drawn with brown arrows, and smeared radially by (a simplified) strain,
drawn in cyan. The reciprocal peak shape as depicted in light green is a
stylized shape transform, which too will be approximated as a Gaussian.
To smooth the prediction over a range of output directions in order to
simulate the detector point spread function and facilitate efficient
sampling of the signal, a distribution of diffraction directions can be
introduced, the standard deviation of which is drawn in dark blue.



(reciprocal peak size), convergence (or divergence) of the

beam, and different strain throughout the crystal (which is a

variation of unit-cell parameters throughout the crystal

volume). Once there is more than one relevant distribution,

the exact location of the peak on the detector can no longer be

determined solely by rearranging the Laue equations. This

paper shows how to model diffraction efficiently in a way that

generalizes to these different conditions, by first introducing

an approximation for calculating full diffraction patterns and

then deriving from that peak locations, shapes and estimates

for their total intensity. Two applications of this model are

presented in Sections 4 and 5. In Section 4 diffraction patterns

are approximated in full detail, pixel by pixel. Optimizing the

free parameters of the model to fit the diffraction pattern in

each pixel should determine the structure-factor amplitudes in

the most efficient way, in terms of diffraction data needed and

achievable precision. This may provide an insight into the

relatively small heterogeneity between samples, which has

proven to be elusive in the presence of large data processing

artifacts and measurement errors. The second application is

more conventional. In Section 5 an expression for the partial

intensity of a reflection in a ‘still’ diffraction pattern (that is,

one recorded from a static crystal without rotation) is derived

and used to correct serial crystallographic data sets, improving

the convergence rate of merging the intensity data to deter-

mine the structure factors.

2. Previous approaches

The earliest approaches to dealing with partially recorded

reflections relied upon the redundancy afforded by rotation

experiments, which makes them inapplicable in serial crys-

tallography. Under those conditions the partiality as a function

of the crystal rotation can be reconstructed as a smooth

function, because it is overdetermined by the diffraction data.

Using the reconstructed profile, the partially observed reflec-

tions can be corrected (Diamond, 1969; Grant & Gabe, 1978;

Winkler et al., 1979).

An early approach in dealing with partial reflections that

can be applied to single diffraction patterns (Rossmann et al.,

1979) assumed reciprocal peaks to be spheres. While the

diffraction process is modelled similarly to the earlier

approaches with the intersection of these small spheres with

the Ewald sphere, here the rocking curve is determined

entirely by the intersection of the Ewald sphere with the

reciprocal-lattice spheres. The reduction allows us to use this

model even for single diffraction patterns. Greenhough and

Helliwell continued this approach and have generalized it to

ellipsoidal shapes (Greenhough & Helliwell, 1982a,b; Green-

hough et al., 1983). Andrews et al. (1987) showed that this

approach can even be applied to Laue diffraction (with very

high polychromaticity). The model of Rossmann et al. was

generalized by Ginn et al. (2015) with a super-Gaussian

distribution of Ewald spheres given by the distribution of

wavelengths and incidence angles, requiring a numerical

integration that is efficiently implemented in CrystFEL (White

et al., 2016) as the partiality model xsphere. This model has 11

free parameters per crystal in total: nine for the unavoidable

unit-cell matrix and one each for the mosaicity radius and the

profile radius.

Holton et al. (2014) modelled the most relevant contribu-

tions, save the crystal shape transform, based on the principles

laid out by Greenhough & Helliwell (1983) and Winkler et al.

(1979) (modelling mosaicity with the intersection of a

disc with the Ewald sphere). They also used Gaussian basis

functions, but instead of analytical integration of the

different distributions, they computed numerical integrals to

combine different effects with automatic sampling. No

attempt to match measured diffraction data with the proposed

model was described; on the contrary, the message of the

publication was the ‘untapped potential’ that should be

realized if a method could be found to fit the simulation to

experimental data.

The program package nXDS (Kabsch, 2014) is another

software suite to process serial crystallographic data. The

partiality model used assumes an isotropic Gaussian decay of

the partiality with the angular offset from the ideal diffraction

condition, making for simple symbolic expressions using

Gaussians in 1D and a straightforward optimization of the

parameters.

A different approach to computing the integrals that are

required for estimating the partiality of reflections in still

diffraction patterns uses ray-tracing principles (Kroon-

Batenburg et al., 2015). This approach is much closer to

what would be called Monte Carlo integration outside of

crystallography.

An isotropic and simplified partiality model using multi-

dimensional but isotropic Gaussian basis functions has been

implemented in CrystFEL and is the default for predicting

spot locations and qualitative visibility since version 0.9.0. It

uses a simplified version of equation (33) below, but without

squaring the exponential term. The scalar projection of the

covariance matrix orthogonal to the Ewald sphere is especially

simple to calculate in this case. This model can also be used as

a partiality model like xsphere and it is selected with the

keyword ggpm. This model is most comparable with the one

used in nXDS (Kabsch, 2014). Notable differences to that

model are the formulation using the 3D Gaussian function and

the concept of reciprocal peak width, which ascribes an

additional constant width to peaks in reciprocal space inde-

pendently of beam parameters and mosaicity, an effect that is

especially significant at low resolution.

The Gaussian-like appearance of peaks on the detector

possibly inspired Mendez et al. (2020) to impose a Gaussian

decay of intensity with distance from the ideal diffraction

condition on the detector. The result in equation (4) of

Mendez et al. (2020) is seen to be proportional to a special case

of equation (14) of this work when the covariance matrix �� is

uniform in all dimensions and scaled appropriately. Conver-

sely, the result presented in this paper can be seen as a multi-

dimensional generalization of the approach of Mendez et al.

(2020). The significance of this difference becomes most

obvious when considering elongated peak shapes in pink-

beam experiments, which cannot be modelled by the approach
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of Mendez et al. (2020), owing to the isotropic nature of that

model.

Dilanian et al. (2016) imposed a peak shape on the detector

to fit the whole pattern in a similar manner to Mendez et al.

(2020), but instead of an isotropic Gaussian shape they used

an isotropic pseudo-Voigt shape. Pseudo-Voigt functions allow

more heavy tailed shapes, and are thereby able to match shape

transforms better with their asymptotically inverse-quadratic

decay. However, their derivation does not connect these peak

shapes with anything but the shape transform of the crystals.

Our method generalizes a similar approach to non-isotropic

peak shapes and connects them to mosaicity, non-mono-

chromaticity, the crystal shape transform, the convergence and

allows arbitrary compositions thereof. However, it is less

general in the sense that only Gaussian shapes are employed.

This is a deliberate limitation, because of the analytical diffi-

culties that would be encountered with operations on aniso-

tropic Cauchy distributions.

3. Derivation

3.1. Underlying diffraction theory

The incident wave interacts with a 3D object, which is

described by its scattering potential, which in turn is mainly

determined by its electron density �. In the Born approx-

imation and a monochromatic incident wave with flux J0 (in

units of energy per area), the photon flux density j (in units of

energy density as a function of solid angle) at each point on

the detector can be described as the Fourier transform of the

electron density Oð�kÞ, evaluated at points corresponding to

the difference �k between the incident wavevector kin and

scattering wavevector kout, a term C correcting for polarization

effects (Cowley, 1995) and the scattering cross section as a

proportionality constant.

The vectors �k lie on a sphere with a radius � reciprocal to

the wavelength �. This sphere is called the Ewald sphere and

an equivalent result is known as the Fourier diffraction

theorem (Slaney & Kak, 1985):

jð�kÞ / J0C O �kð Þ
�� ��2: ð2Þ

In this approximation diffraction is a linear operation, which

means that the superposition principle applies to the complex

wavefunction of the diffraction. The diffraction of several

objects is the sum of the diffraction of these objects. The

diffraction of an object by multiple sources is the sum of the

diffraction of the object by each source. Depending on

whether there is a fixed phase relation between the different

contributions to the total diffraction, the contributions add

incoherently (assuming an integration over a time interval

several times the duration of the oscillation of the wave), that

is as modulus squares, or coherently, which is in the complex

domain, before the modulus square operation. For a deriva-

tion of the resulting average amplitudes of coherently and

incoherently interacting waves see Section 1.3.2. of Cowley

(1995).

3.2. Decomposition into Gaussian basis functions

Distributions of the sources and the objects are just an even

further generalization of the superposition principle;

combining these distributions amounts to convolutions of the

distributions. However, 3D integrals of distributions over

potentially curved paths do not, in general, have a closed

solution. Numerical solutions are easy to determine, but

compounded, derivative or derived properties (such as those

required for least-squares minimization) grow in complexity,

exponentially. Once one step is numerical, the next steps will

most likely have to be numerical too. It is therefore useful and

more insightful to have simple closed-form approximations.

Gaussian distributions, as well as products and sums thereof,

have closed and simple integrals when integrated over the

whole domain or along a cut or a projection. Such integrals

can likewise be expressed as a sum of Gaussian functions and a

constant term. Also their Fourier transforms are well behaved.

This way, integrating over multiple distributions still increases

the complexity of the result, but starting from a less complex

baseline. This means that if one can express all distributions in

the model as a sum or series of Gaussian kernels, the condi-

tional integration of the resulting distribution can be achieved

symbolically. While not every distribution is suitably

expressed as a weighted sum of Gaussian distributions, a large

family is (Sorenson & Alspach, 1971). Many natural distri-

butions belong to this family. And for most distributions used

in the application of the method discussed here, the number of

Gaussian basis functions, for sufficient approximation, is very

low. The probability density function of a Gaussian distribu-

tion will be abbreviated with �ðx; l;�Þ when convenient. All

vectors are given in bold font and are column vectors unless

transposed with a superscript T. The multiplication sign is

omitted, except when equations are broken over more than

one line, and multiplications between vectors or matrices are

matrix multiplications by default.

� x; l;�ð Þ

¼ exp �
1

2
x� lð Þ

T��1 x� lð Þ � log 2��j jð Þ
� �� �

; ð3Þ

where � is the probability density function of a Gaussian

distribution, x is a point in space, l is the mean vector, � is the

covariance matrix.

When the Gaussian basis functions are scaled appropriately,

we refer to them as Gaussian kernels, as they are not

normalized to one, like Gaussian distributions would be. This

paper uses some common properties of probability distribu-

tions in general and Gaussian distributions in particular, which

are summarized here. The joint probability of several uncor-

related outcomes is given by the product of their probabilities.

By analogy, the probability density that satisfies all individual

probability distributions is computed by a pointwise product

of the individual densities. The product of Gaussian distribu-

tions is a scaled Gaussian with a mean given by the ��1

weighted arithmetic mean of the individual means and a new

covariance given by the inverse of the sum of those weights:
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� x; l1;�1ð Þ� x; l2;�2ð Þ ¼ � l1; l2;�1 þ�2ð Þ

� � x; ��1
1 þ��1

2

� ��1
��1

1 l1 þ��1
2 l2

� �
; ��1

1 þ��1
2

� ��1
h i

:

ð4Þ

This result can be simplified further, when both densities are

identical:

� x; l;�ð Þ
2
¼ � l; l; 2�ð Þ� x; l;

1

2
�

	 

: ð5Þ

The probability distribution for the sum of two independent

random variables is given by the convolution of the individual

distributions. The rules for combining the means and variances

are equivalent to the commonly employed error propagation:

the means add, just like the variances.

� x; l1;�1ð Þ � � x; l2;�2ð Þ ¼ � x; l1 þ l2;�1 þ�2ð Þ: ð6Þ

If the individual distributions are correlated, the means still

add to form the sum, but there is an additional summand for

the variance of the sum, �XþY = �X þ�Y þ 2 covðX;YÞ. In

case of a correlation of 1 this reduces to ð
ffiffiffiffiffiffiffi
�X

p
þ

ffiffiffiffiffiffiffi
�Y

p
Þ

2.

The identities of equations (4) and (5) can be used to

compose the expected flux in a particular diffraction direction

from the individual contributions of the source and of the

object (see Fig. 1). As mentioned above, the formulation of

this composition depends on whether the distributions are

assumed to be in a fixed phase relation (coherent), or to have a

randomly varying and uncorrelated phase shift (incoherent).

The following two identities, each first expressed using

exponential functions and then in terms of �, are at the core of

the method for analytical integration used in this work. The

first is the integral of the product of two Gaussian densities,

which is then squared (for coherent integration):

� R
R

n

exp � 1
2 x� l1ð Þ

T��1
1 x� l1ð Þ þ log 2��1

�� ��� �� �
 �
� exp � 1

2 x� l2ð Þ
T��1

2 x� l1ð Þ þ log 2��2

�� ��� �� �
 �
dx
�2

¼ exp � l1 � l2ð Þ
T��1
� l1 � l2ð Þ � log 2���

�� ��� �� �
R
R

n

� x; l1;�1ð Þ� x; l2;�2ð Þ dx

" #2

¼ � l1; l2;��ð Þ
� �2

¼ � 0; 0; 2��ð Þ� l1; l2;
1
2 ��

� �
: ð7Þ

For incoherent integration the integration and squaring

operations are reversed:R
R

n

exp � 1
2 x� l1ð Þ

T��1
1 x� l1ð Þ þ log 2��1

�� ��� �� �
 �2

� exp � 1
2 x� l2ð Þ

T��1
2 x� l1ð Þ þ log 2��2

�� ��� �� �
 �2
dx

¼ exp
h
� l1 � l2ð Þ

T��1
� l1 � l2ð Þ � log 2���

�� ��� �
� 1

2 log 4���
�� ��� �i R

R
n

� x; l1;�1ð Þ
2� x; l2;�2ð Þ

2 dx

¼
R
R

n

� l1; l1; 2�1ð Þ� x; l1;
1
2 �1

� �
� l2; l2; 2�2ð Þ

� � x; l2;
1
2 �2

� �
dx

¼ � l1; l1; 2�1ð Þ� l2; l2; 2�2ð Þ
R
� x; l1;

1
2 �1

� �
� � x; l2;

1
2 �2

� �
dx

¼ � l1; l1; 2�1ð Þ� l2; l2; 2�2ð Þ� l1; l2;
1
2 �1 þ�2ð Þ

� �
: ð8Þ

In equations (7) and (8) we have used the definitions:

�� ¼ �1 þ�2

�� ¼ ��1
1 þ��1

2

� ��1

l� ¼ �� ��1
1 l1 þ��1

2 l2

� �
:

As can be seen from the above expressions, the difference

between coherent and incoherent integration amounts to only

a difference in scaling when both of the two distributions are

single Gaussian distributions (that is, not sums of several

Gaussians). As a simplification and because the linear scaling

factor is hardly of any consequence, incoherent integration

will be the default in the following, but the procedure can be

applied with minor modifications for coherent integration as

well. Partial coherence can be dealt with by splitting the

coherent and the incoherent components into separate

Gaussian functions and propagating them appropriately, or by

interpolating between the coherent and the incoherent solu-

tions based on the degree of coherence, but this will not be

considered any further in this work.

3.3. Parametrization of the basis functions

3.3.1. The illumination. The diffraction condition, indi-

cating the spatial frequencies of the object that contribute to

the diffraction pattern and which is given by equation (2),

forms a spherical shell that passes through the origin, which

we have referred to above as the Ewald sphere. If the incident

beam is convergent or divergent, there is a distribution of
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Figure 2
Illustration of the effect of divergence or convergence. Multiple (depicted
three) incident-beam directions with the same wavelegth all lie on a
spherical cap and produce a nest of Ewald spheres.



incoming directions, leading to a nest of spherical shells of

equal radius in reciprocal space, whose centres lie on a

spherical cap such that they all intersect at the origin. The

normal at the centre of this cap is parallel to the mean beam

direction (see Fig. 2). The covariance matrix �in of kin due to

convergence or divergence alone cannot really be simplified in

general, but if the distribution is isotropic, it can be written as

�in ¼ �
2
in�

2 I� winwT
in

� �
; ð9Þ

where �in is the standard deviation of the incidence angles (i.e.

the convergence), I is the identity matrix and vectors w are

unit vectors describing beam directions, derived from the

wavevectors k:

win ¼
kin

jkinj

wout ¼
kout

jkoutj
:

Each beam direction, in theory, would need its own polar-

ization correction, and this could be achieved by integrating

the polarization correction term for all the beam directions,

but as small angles are assumed, the polarization correction of

the main beam direction is deemed sufficient for all.

If there are multiple sources with different wavelengths, i.e.

if the wavelength distribution has a finite bandwidth, the

Ewald spheres have different radii and consequently the

distribution of sphere centres, previously on a spherical cap, is

broadened radially. The 3D distribution of sphere centres is

approximated as a sum of Gaussian kernels. If the angular

distribution is assumed to be small and independent of the

distribution of wavelengths, it can be calculated by convolving

the angle and wavelength distributions to form a cumulative

distribution. The convolution of Gaussian kernels amounts to

a summation of the respective covariance matrices [see

equation (6)].

The distribution of �k that samples the Fourier transform

of the object in equation (2) and contributes to diffraction in a

given direction, i.e. a point on the detector, can be derived

from the distribution of sphere centres. The distribution of �k

will be approximated as a Gaussian distribution with mean lA

and covariance matrix �A. Since the diffraction process does

not change the wavelength, the outgoing wave distribution is

perfectly correlated in wavelength with the corresponding

incoming wave distribution. Differences of fully correlated

Gaussian distributions require taking the difference of the

square root of the respective covariance matrices. Given kin

and kout are approximated as Gaussian distributions, �k is

distributed as a Gaussian around the mean value lA corre-

sponding to the difference between the mean of kout and kin.

The covariance matrix �A of the distribution of �k can be

computed as the correlated difference between the distribu-

tion of kin with covariance matrix �in and the distribution of

kout with covariance matrix �out in that particular direction:ffiffiffiffiffiffiffi
�A

p
¼

ffiffiffiffiffiffiffi
�in

p
�

ffiffiffiffiffiffiffiffiffi
�out

p
: ð10Þ

The distribution of kout with the covariance matrix �out =

�2
�woutw

T
out is not affected by divergence and only contains the

wavelength distribution along kout, and where �� is the band-

width. The distribution of kin is affected by both the wave-

length distribution and the angular distribution of incident

beams, possibly correlated. In the slightly less general case,

where it is assumed that the angular distribution of the inci-

dent beam is isotropic and is not correlated to its wavelength,

the distribution of �k entirely due to polychromaticity is

�A ¼ �
2
��w�wT: ð11Þ

Combining this equation with equation (9) gives a way to

estimate �A under simplified conditions:

�A ¼ �
2
��w�wT þ �2

in�
2 I� winwT

in

� �
: ð12Þ

If we cannot assume that wavelength and incident angle are

uncorrelated, �in can be treated as a free parameter instead,

and �A can be derived by rotating the component of �in that

is due to polychromaticity and therefore in line with the

incident-beam direction to each kout. The distribution of kout

given �in is therefore

�out ¼ rotate win;woutð Þ wT
in�inwin

� �
winwT

in

� �� �
; ð13Þ

where rotateðwin;woutÞ is the rotation matrix of the rotation

around the axis orthogonal to win and wout, that would align

win to wout. Then �A is given by equation (10).

3.3.2. The crystal. Due to its periodicity, the Fourier

transform of a crystal is concentrated in peaks. As discussed

above, these peaks are broadened by properties of the crystal,

such as the finite width of the crystal, mosaicity and strain.

Here we define the separate effects that are modelled.

Mosaicity is commonly used to describe a rotational

disorder of the crystal and can be seen as a distribution of

orientations of the unit cell. Rotational disorder of an object in

3D will have six degrees of freedom in general: rotational

disorder around three orthogonal axes and three covariance

terms between them.

Strain is the distribution of contractions of unit cells.

Generally, for each real-space lattice point in 3D, there can be

a different distribution of displacements in the direction of the

origin and transverse to it. In general, this is a 3D tensor. In

the following we will assume that the changes of the structure

factors due to strain are negligible.

Mosaicity and strain taken together, considering correla-

tions of the effects in 3D, require a higher-dimensional tensor

that maps each point of reciprocal space to a cross-correlation

matrix. In the following, however, mosaicity and strain will be

taken as uncorrelated and mosaicity will be assumed to be

isotropic. This means that mosaicity is assumed to be equal in

all angular directions and mutually independent of crystal

strain. The integration in the following subsection (Section

3.4) will however be applicable with and without this

simplification.

Reciprocal peak shape is the parameter that describes the

distribution of each lattice point in reciprocal space, possibly

due to the transform of the shape of a finite crystal, before

being broadened by the effects of mosaicity and strain. In
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general this is a free parameter, but e.g. if the shape transform

is sincð�xÞsincð�yÞsincð�zÞ (the Fourier transform of a cube),

it could be approximated by a Gaussian distribution with

covariance �P ¼ ð1=4ÞI. Because of the approximately quad-

ratic decay in the observed diffraction, as opposed to the

exponential decay of the Gaussian, shape transforms are not

approximated by sums of Gaussian functions efficiently.

Therefore, if the reciprocal peak shape is the predominant

effect that is broadening the diffraction condition, the

approximate nature of the proposed model becomes most

obvious. The strength of the proposed method is the ability to

combine different effects analytically, where the convolved

distributions naturally become smoother.

Integer multiples of the reciprocal unit-cell matrix R span

the locations lP of the peaks in the Fourier transform of the

crystal:

lP ¼ R

h

k

l

0
@

1
A:

The density around lP is approximated to be a Gaussian

distribution with the covariance matrix �P. The cumulative

distribution results from the convolution of the individual

distributions. Its covariance is therefore the sum of the

covariance matrix �P0
describing the shape transform, the

effect of isotropic mosaicity �2
mðjlPj

2I� lPlT
PÞ, and the effect

of uncorrelated strain �2
s lPlT

P. Here �m quantifies the mosai-

city as the standard deviation of rotational disorder, and �s

quantifies the strain as the standard deviation of the relative

unit-cell size variation.

3.4. Evaluation of integrals

Given the distributions defined in Sections 3.3.1 and 3.3.2,

we are now in a position to compute the diffracted flux density

in a given direction wout. This is done by evaluating particular

integrals for each pair of Gaussian basis functions of the

distributions, as given below.

Polarization and scaling terms were left out at this point for

clarity, because they are not affected by the integration. If at

least one of the distributions is assumed to have random or

chaotic phases, the integration is incoherent, so using equation

(8) and the definition of � in equation (3) we get the following

result: R
R

3

� x; lA;�Að Þ
2� x; lP;�Pð Þ

2 dx

¼
R
R

3

� x; lA;
1
2 �A

� �
4��A

�� ���1=2

� � x; lP;
1
2 �P

� �2
4��P

�� ���1=2
dx ð14Þ

¼ � lA; lP;
1
2 �A þ

1
2 �P

� �
4��A

�� ���1=2
4��P

�� ���1=2

¼ exp � lA � lPð Þ
T��1

o lA � lPð Þ
� �

32�3��1
�

�� ���1=2
: ð15Þ

If all contributions to the diffraction described by the two

distributions have a constant phase relation, the integration is

coherent:

R
R

3

� x; lA;�Að Þ� x; lP;�Pð Þ dx

" #2

¼ � lA; lP;�oð Þ
2

ð16Þ

¼ � lA; lP;
1
2 �o

� �
4��o

�� ���1=2

¼ exp � lA � lPð Þ
T��1

o lA � lPð Þ
� �

2��o

�� ���1
; ð17Þ

where

�o ¼ �A þ�P

�� ¼ ��1
A þ��1

P

� ��1
:

The result of equation (15) is applied below in Section 4 to

compute a diffraction pattern that matches the observed

pattern. This requires the appropriate scaling and polarization

correction. All in all there are 17 parameters describing each

Gaussian kernel of the crystal (nine for the unit cell, six for the

shape transform and one each for mosaicity and strain) and

nine describing each Gaussian kernel in the source (three

parameters for the direction and six for a possibly correlated

distribution of illumination angles and wavelengths). The

source will typically not change for many crystals in a serial

crystallography experiment and one Gaussian kernel will give

enough degrees of freedom to describe the diffraction of each

crystal.

4. Pixel-wise diffraction pattern prediction

The first way our approach can be used to process data is to

model each pixel of a diffraction pattern, making use of as

many constraints as possible in determining the hidden para-

meters and the structure-factor amplitudes. A still diffraction

pattern can be calculated using the result of equation (15) for

each point on the detector, by applying a polarization

correction C and scaling with the intensity of the incoming

beam and with the respective structure-factor modulus square

jFj2 of each reflection:

j ¼ J0 F

h

k

l

0
B@

1
CA

�������
�������

2

C p; n;win;woutð Þ

�

exp � �k� R

h

k

l

0
B@

1
CA

2
64

3
75

T

��1
o �k� R

h

k

l

0
B@

1
CA

2
64

3
75

8><
>:

9>=
>;

32�3��1
�

�� ��1=2

ð18Þ

C p; n;win;woutð Þ ¼ p 1� wT
out win � nð Þ

� �2
n o
þ 1� pð Þ 1� wT

outn
� �2

h i
; ð19Þ

where J0 is the incident-beam flux, p the degree of polariza-

tion, n the normal to the polarization plane and F the structure
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factor. The flux measured in a pixel is the integral over all

directions that fall into the solid angle of that pixel summed up

for all Miller indices with significant excitation. If the

predicted flux was constant over this area, the integral would

be just proportional to the solid angle that the pixel occupies.

The detector is assumed to be composed of rigid panels.

Each panel has its own 2D coordinate system consisting of the

dimensions fs and ss defined in terms of the memory order,

where fs (short for fast scan) is the dimension of values stored

consecutively and ss (short for slow scan) is the dimension that

is not. Each panel has a local coordinate system given by a

3 � 2 matrix D for the two dimensions in the plane of the

panel and an offset vector o for the absolute position in space

of the corner corresponding to the origin of the coordinate

system of this panel. The solid angle of a pixel can be

approximated using the derivative of the normed direction-

ality vector wout with respect to the detector coordinates:

wout ¼ D
fs

ss

	 

þ o

� �
D

fs

ss

	 

þ o

����
����
�1

; ð20Þ

where wout is the direction in which diffraction is to be

predicted, D is the matrix translating between panel coordi-

nates and spatial coordinates, o represents spatial coordinates

of the reciprocal-space origin in detector coordinates,

ðfs ssÞ
T are the coordinates of the pixel on the detector.

For the following two derivations it will be useful to know

the derivative of the direction wout with respect to its two

coordinates in the detector panel’s coordinate system:

@ woutð Þ

@
fs

ss

	 
 ¼ D� woutw
T
outD

� �
D

fs

ss

	 

þ o

����
����
�1

: ð21Þ

The solid angle � is approximated by the length of the cross

product of the pixel sides projected onto the unit sphere:

� ’
@ woutð Þ

@ fs
fsð Þ

� �
�

@ woutð Þ

@ ss
ssð Þ

� �����
����: ð22Þ

(Note that everywhere else besides in this equation the symbol

� denotes a multiplication.) However, the predicted peaks can

be very narrow, and therefore the predicted flux can vary

substantially within a single pixel. To enable an efficient

integration over the area, the predicted flux density can be

smoothed analytically without changing the total flux of the

whole diffraction pattern. This is achieved by introducing a

Gaussian point spread function for the detector (the blue

arrows in Fig. 1) with a covariance matrix corresponding to 1
2

the extent of a pixel, or for greater accuracy, by oversampling

the pixel and applying the same procedure to the subpixels.

Simply put, this smooths the prediction to a level where

sampling it discretely only introduces minor artifacts, the main

effect being a slightly reduced contrast. The constant 1
2, of the

aforementioned pixel extent, minimizes the maximum Kull-

back–Leibler divergence DKL (Kullback & Leibler, 1951)

between the desired proper integral (b) involving the error

function and the estimate (c).

Equation (23) shows a proof in one dimension, that can be

generalized to higher dimensions for all shapes for which an

orthogonalizing coordinate transform can be found. It is

natural to assume that the same constant approximately

minimizes this difference even when the sides are not strictly

parallel. The DKL is an asymmetric measure for the difference

of probability distributions taking into account that under-

estimating a probability is more detrimental than over-

estimating it. It was chosen because the predicted flux density

is a scaled probability density.

DKL P jj Qð Þ ¼

Z
R

PðxÞ log
PðxÞ

QðxÞ

� �
dx

bðx; �; �Þ ¼
1

2
erf

x� �þ 1
2ffiffiffiffiffiffiffi

2�2
p

	 

� erf

x� �� 1
2ffiffiffiffiffiffiffi

2�2
p

	 
� �

cðx; �; �Þ ¼
exp � 1

2 x� �ð Þ
2 �2 þ �2

þ

� ��1
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �2 þ �2

þ

� �q

arg max
ðx��Þ;�

bðx; �; �Þ log
bðx; �; �Þ

cðx; �; �Þ

� �� �
¼

1

2
; 0

	 

lim

�!0þ;x��!1
2

�
bðx; �; �Þ½ � ¼ 1

arg min
�þ
� log q x; x�

1

2
; 0

	 
� �� �

¼ arg min
�þ

1

22�2
þ

þ log 2��2
þ

� �� �
¼

1

2
; ð23Þ

where P is the precise probability distribution, Q the

approximation, � the mean value, � the standard deviation

from the mean, �+ the constant to be solved for. Using the

results in equations (23) and (21) the resulting covariance

matrix of the smoothing function is

�D ¼
�2

22

@wout

@
fs

ss

	 
 fs

ss

	 
2
664

3
775 @wout

@
fs

ss

	 
 fs

ss

	 
2
664

3
775

T

: ð24Þ

We now have a way of modelling the flux of each pixel. This is

good enough for monochromatic experiments, but to model

polychromatic experiments we need to take into account that

detector response signals of integrating detectors are

proportional to the total photon energy impinging on the

detector. Integrating detectors are commonly chosen over

counting detectors for SX (serial crystallography) experiments

as they are not limited to measuring one photon per pixel at a

time. The following derivation uses wavenumber �, which is

proportional to the impinging photon energy.

The average wavenumber of the polychromatic diffracted

beam at the particular location of a given pixel can be esti-

mated from the mean point of the joint distribution of the

source and the peak of the crystal in reciprocal space

[compare equation (4)]. This is achieved by rescaling the

component collinear to the incident beam. We are only

interested in the collinear component because the deviation of
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�k in any other direction is not due to the wavelength

distribution but due to other factors like convergence. The

rescaling is necessary, because the correlated difference

between kin and kout, which necessarily have equal wave-

lengths, leads to a covariance matrix of �k that appears

sheared with respect to the covariance of kin and compressed

along the beam direction. A geometric visualization is offered

with Fig. 3 in lieu of a mathematical proof. The cosine of the

angle of diffraction equals the scalar product between the

normalized incoming and outgoing wavevectors, leading to the

following expression:

� ¼ wT
in ��1

A þ��1
P

� ��1
��1

A lA þ��1
P lP

� �
1� wT

inwout

� ��1
:

ð25Þ

Having a distribution of photons of different wavelengths

does not change the Poisson photon counting statistic, but it

leads to an additional variance in the measured intensity

proportional to the width of this distribution, because each

photon measured can have a different energy. The width of the

wavenumber distribution in each pixel can be estimated from

the shape of the product of the two Gaussians in equation (14)

by projecting to the incoming beam and rescaling. This is

analogous to the expected wavenumber in equation (25).

�� ¼ 1� wT
inwout

� ��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
wT

in��win

r
: ð26Þ

From the expected photon flux, the expected wavelength and

the constant g describing the detector response as detector

counts per wavenumber, the expected detector reading ŷy for a

given pixel is given as the product

ŷy ¼ j�g: ð27Þ

To model the photon counting statistic, whose variance scales

with the expected photon count, and all degrees of systematic

errors, of which the variance is assumed to scale quadratically

with the predicted photon flux, we employ the following two-

parameter (	 and 
) error model to predict the total variance:

�2
ŷy ¼ g2 	þ 
 j

�� ��� �
j
�� �� �2 þ �2

�

� �
: ð28Þ

This error model is essentially equivalent to equation (3) of

Diederichs (2010).

To connect the prediction ŷy with the measured data y we

introduce a probability distribution described by the density

function f ðyÞ, which enables a maximum-likelihood optimi-

zation. The probability distribution is a mixed distribution of a

smoothed Gaussian that approximates a discrete Gaussian

with the additional variance 1=22 using the result in equation

(23) and a super-heavy-tailed outlier distribution uðyÞ that

models even extreme outliers like defective pixels:

f ðyÞ ¼ 1� �ð Þ� y; ŷy; �2
ŷy

� �
þ �uðyÞ ð29Þ

u yð Þ ¼

u log2 ðyÞ
� �

y
if y> 1

0:29 1�
y� 1

2

� �2
� 1

4

1þ 1= log ð2Þ

" #
otherwise:

8>>><
>>>:

ð30Þ

uðyÞ is a smoother version of Rissanen’s universal prior for

integers (Rissanen, 1983), � is the outlier probability.

Crystal diffraction is sparse and most pixels will not see

significant diffraction. The pixels with significant diffraction

can be estimated conservatively by finding the potentially

excited indices using a region growing algorithm (see

Appendix B) and then projecting the peak shape onto the

detector [using equation (41)]. This accelerates the prediction

greatly while not affecting the result in any significant way.

Because derivatives can be computed analytically, the

predicted diffraction pattern can be optimized using pseudo-

Newton optimization methods like BFGS (Broyden, 1970;

Fletcher, 1970; Goldfarb, 1970; Schanno, 1970) or gradient

descent. In theory, this should make the optimization

straightforward and efficient, but the target function has many

local minima and plateaus.

Together with the associated computational cost, this is the

reason why pixel-wise refinement of the Gaussian sum model

proposed in this paper so far has only been applied to indi-
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Figure 3
Geometric explanation for equation (25) for the expected wavenumber.
Convergence, orthogonal to win, and wavelength dispersion, in line with
win, are indicated as a box to highlight the shearing of the covariance
when forming the correlated difference between win and wout and their
respective variances. It can be seen that the length of �w projected onto
win is 1� cos ð�Þ, where � is the angle of diffraction.

Figure 4
Comparison between (a) previously published diffraction data from a
human serotonin receptor (Liu et al., 2013) and (b) predicted diffraction
of the same image region after successful optimization, with estimated
background added. Diffraction is predicted using equation (19) with the
substitution �o ! �o þ�D, corrected for the solid angle with equations
(22), (25) to estimate the expected wavelength and summed up over all
significantly excited Miller indices. Intensities are scaled according to the
reference intensities deposited in the PDB (Protein Data Bank) under
4NC3 . The bandwidth of the X-ray beam is estimated to be about 0.1%
[LCLS states 0.2% �E/E FWHM for the CXI beamline (LCLS, 2022)].



vidual diffraction patterns and not full data sets. This method

also depends on a pixel-wise background estimate and a

detector geometry that is determined well enough, such that

predicted pixels coincide mostly with measured pixels. This

demands the computation of about 8 kpx for a 4 Mpx detector.

This makes it computationally expensive, requiring on the

order of 10 single-core computing hours per pattern (4 GHz

AMD A12). Therefore, this method has not yet connected

with structure refinement directly, but is used to show visually

that different diffraction patterns can be predicted accurately.

Examples of successful pixel-wise diffraction pattern predic-

tion after parameter optimization can be found in Figs. 4 and

5. Table 1 lists the parameters that were optimized.

5. Merging using integrated peak intensities

This section describes the second application of the model

presented in Section 3: merge Gaussian partiality corrected

integrated intensities (MGPCII). First we derive an expression

for the total intensity of a reflection in a still diffraction

pattern and then we describe a method of how to use this

expression to reduce the detrimental impact of partially

recorded reflections on the estimates of structure factors.

5.1. An expression for integated peak intensities

The total photon energy of one reflection can be computed

by integrating the result of equation (15) over all directions.

This integral can be approximated when considering that the

angular extent of a reflection on the detector is small and the

curvature as well as the change in width of the Ewald sphere is

negligible for the integral over a single reflection. The density

of the distribution of Ewald spheres can therefore be

approximated as a planar (Winkler et al., 1979) Gaussian,

decaying along the direction of diffraction, but constant

orthogonal to it. First the double integral is restated using

equation (14). Then the integral along all possible outgoing

wave directions is approximated with a projection onto the

outgoing wave direction with the highest intensity wmax, which

can be found by function optimization:R
R

3

R
R

3

� x; kin � �wout;�Að Þ� x; lP;�Pð Þ
� �2

dx dwout ð31Þ

¼
R
R

3

� kin � �wout; lP;
1
2 �A þ

1
2 �P

� �
4��A

�� ���1=2

� 4��P

�� ���1=2
dwout ð32Þ

’ � kin � �wmax; lP;wT
max��wmax

� �� �2
4���
�� ���1=2

; ð33Þ

where ��1
A ¼ d�2woutw

T
out, d is the width of the Ewald sphere

at the projection point. The photon flux of each reflection in

each pattern is estimated as the product of the result of

equation (33) with the incident photon flux J0, the structure-

factor amplitude squared, a linear scaling factor a, a B-factor

correction term modelling a Gaussian decay of intensities due

to random atomic displacements, and a term for the polar-

ization correction [equation (19)]. This leads to an expression

analogous to equation (18), but with an explicit linear and B-

factor scaling instead of implicitly assigning those as terms in

the structure factors:

j ¼ J0 F
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32�3��1
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ð34Þ

The calculation of the mean wavenumber is analogous to

equation (25):

� ¼
wT

in wT
out�Awoutð Þ

�1
lA þ wT

out�Pwoutð Þ
�1

lP

h i
1� wT

inwout

� �
wT

out�Awoutð Þ
�1
þ wT

out�Pwoutð Þ
�1

h i : ð35Þ
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Figure 5
Comparison between (a) diffraction data (unpublished) of selenobiotine-
bound streptavidin crystals and (b) predicted diffraction of the same
image region with estimated background added. Diffraction is predicted
using equation (19) with the substitution �o ! �o þ�D, corrected for
the solid angle with equations (22), (25) to estimate the expected
wavelength and summed up over all significantly excited Miller indices.
The diffraction was measured at ESRF with a 1M Jungfrau detector using
a pink beam with 5% bandwidth FWHM. The structure factors for the
prediction are taken from the streptavidin–norbiotin complex structure
deposited under 1LCV in the PDB (Pazy et al., 2002).

Table 1
Parameters that were optimized against pixel values for each image.

Parameter Degrees of freedom Optimization

Geometry description 9 for each panel Yes
Unit cell 9 Yes
Reciprocal peak shape 6 Yes
Mosaicity 1 Yes
Strain 1 Yes
Linear scale factor 1 Yes
B factor 1 Yes
Error model 2 Yes
Source description 10 No



The width of the predicted wavenumber distribution is

analogous to equation (26):

�� ¼ 1� wT
inwout

� ��1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
wT

out�Awoutð Þ
�1
þ wT

out�Pwoutð Þ
�1

h i�1
r

: ð36Þ

The expected detector count for each reflection is the product

of wavenumber, flux and a detector constant, as in equation

(27). Its variance is estimated with the same two-parameter

error model as for the pixel-wise prediction in equation (28).

5.2. Parameter optimization for merging

The purpose of merging is to produce accurate estimates of

the scattering intensities, proportional to the modulus squares

of the structure factors, from a set of observed integrated peak

intensities. To that end, to make use of equation (33), its free

parameters need to be determined. The scattering intensities

are among the parameters to be determined; the other para-

meters are listed in Table 2. To find the parameters we have

chosen a maximum-likelihood approach because it can be

more robust than least squares, but it is still relatively easy to

optimize. The probability distribution to be optimized for each

observation is f ðyÞ. Probabilities are assumed to follow a

mixed distribution of a Gaussian distribution and an outlier

distribution oðyÞ. The outlier distribution should be chosen so

as to best describe all measured intensities in general, without

prediction or scaling. In many cases, a Cauchy distribution is a

good choice because it fits the shape of the distribution of

integrated intensities well for frequently observed values and

has an inverse quadratic decay like the positive intensities. The

exact shape of the outlier distribution is less relevant; its most

important feature is a slow asymptotic decay to make the

maximum-likelihood approach robust.

f ðyÞ ¼ 1� �ð Þ� y; ŷy; �2
ŷy

� �
þ � oðyÞ ð37Þ

oðyÞ ¼
1

�
 1þ y�y0




� �2
� � ; ð38Þ

where o is outlier distribution, � is outlier probability (1/16), 

is the scale parameter of the Cauchy distribution and y0 is 0.

5.3. Tests on experimental data

To show that equation (33) can be used to correct partially

recorded reflections to improve the data quality, two serial

femtosecond crystallography data sets were chosen. Data set 1

is a calibration data set of granulin microcrystals. This data set

has not previously been published and was measured in

October 2020 at the SPB beamline of the European XFEL in

preparation for bacterial insecticide crystals, by a team led by

Dominik Oberthür and Colin Berry. It has been deposited in

the CXIDB with the ID 203. Data set 2 (Nass, 2020) allows

SAD (single-wavelength anomalous diffraction) phasing.

The diffraction patterns of both data sets were indexed and

integrated using indexamajig of CrystFEL 0.9.1. To get a

baseline for comparison with our method, the integrated

intensities were merged with partialator 0.9.1 and partialator

0.8.0 using the partiality models ggpm, xsphere and unity, and

the merged intensities were chosen that produced the best

structure refinement results. The data sets were processed

once with and once without overprediction, which is also

integrating peaks further away from the diffraction condition,

via the command-line option - -overpredict. The effect of

overprediction is shown for the first data set in Fig. 6 and, as

can be seen, the additional reflections are mostly of low

intensity. Overprediction was not helpful when merging using

partialator in any of the combinations of options that were

tested. Therefore, overprediction is not enabled in the data

points used as a comparison with the new method. However, it

consistently led to better structure refinement results when

correcting partialities using the generalized Gaussian diffrac-

tion model and maximum-likelihood parameter optimization

during merging. This is why overprediction is enabled for that

method.

The method described in Section 5.2 was applied to both

data sets and the quality of the intensities was compared with

the partialator baseline. In addition, data set 1 was investigated

in more detail, with regards to overfitting, to the correlation of
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Table 2
Parameters that were optimized against integrated intensities for each
crystal.

Parameter Degrees of freedom Optimization

Geometry description 9 for each panel No
Unit cell 9 Yes
Reciprocal peak shape 6 Yes
Mosaicity 1 Yes
Strain 1 Yes
Linear scale factor 1 Yes
B factor 1 Yes
Error model 2 Yes
Source description 10 No

Figure 6
Histogram of measured integrated intensities of data set 1 in black
(without overprediction) and red (with overprediction) overlaid with the
Cauchy outlier distribution (
 = 1967.7) in blue. The outlier distribution
was chosen so as to describe the measurements well, but also to reserve
some probability especially for the extreme values. Note that the
additional intensities due to overprediction are mostly small.



prediction and measurement and the distribution of estimated

partialities, while the second data set was used to test how

much SAD phasing could be improved.

After optimization of the scaling parameters (in Table 2) for

data set 1, the correlation between prediction and measure-

ment is high (Fig. 7), but the relative error between prediction

and measurement still is about 25% and much larger than the

photon counting error.

The comparison of predicted and measured partialities in

Figs. 8 and 9 shows a strong correlation, which is exploited

when correcting the measurements using the partiality esti-

mate. Unknown partialities increase the variance of the

intensities before merging and therefore of the merged

intensities too. The variance can be reduced by partiality

correction.

As would be expected for the smoothed distribution of the

function values of a Gaussian function with uniform input (for

a derivation of the distribution before smoothing see

Appendix D), the histogram of the measured partialities (Fig.

10) has an optimum at 0, corresponding to a reflection that was

not observable (most reflections in a given crystal orientation

are not observable), and also a very faint optimum at 1. The

optimum at 1 corresponds to the flat top of the intensity curve

of an observation near its maximum intensity.

To test the amount of overfitting, data set 1 was split

randomly in two halves. The first half was used to optimize the

parameters of the scaling and partiality model in Table 2 and

the second half was used to test the correspondence of

prediction and measurement. The median correlation of 256

random prediction–measurement pairs (to increase the

robustness of the correlation, as there are outliers that skew

the correlation to 0,�1 or 1 randomly) decreased from 0.59 to

0.56; the reduction in correlation can be observed by

comparing Fig. 11 with Fig. 12. This is evidence of some degree

of overfitting, but also means that even half the number of

peaks is sufficient to arrive at roughly the same prediction. So

even though the method of partiality correction of integrated
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Figure 8
A scatter plot of a subset of predicted versus measured partialities with an
estimated photon counting and background subtraction error of less than
1/8 in the granulin data set (data set 1). Chosen are the first 10 000
intensities from the data set in the order they are recorded, to make the
result as reproducible as possible.

Figure 9
Predicted partialities compared with measured partialities, with photon
counting error estimates indicated by error bars. The first 993 values from
data set 1 in the order they are recorderd to have an estimated photon
counting and background subtraction error of less than 1/4 are displayed.
The black line shows where the points would lie, if the predictions were in
perfect agreement with the measurements.

Figure 7
Predicted intensities versus measured intensities with the photon counting error estimates indicated by blue error bars and corrected error estimates by
grey error bars. In red are data points that were treated as outliers, dots in blue were treated as regular data points. The black line shows where the points
would lie if the predictions were in perfect agreement with the measurements. (a) shows the first 1000 intensities as recorded in the granulin data set
(data set 1). (b) shows the intensities and predictions for the crystal with the strongest diffraction in the same data set.



intensities would likely profit from additional constraints

(among the constraints that were left unused are the peak

positions on the detector and the fact that the different unit-

cell matrices are mainly just different rotations of each other),

it still reduced the number of diffraction patterns necessary to

achieve a given data quality by about a factor of 2. R factors

after automatic refinement (Fig. 13) were consistently lower

for MGPCII than for partialator.

Data set 2 is of the adenosine receptor A2A, measured at

LCLS (Linac Coherent Light Source) using a wavelength of

2.7 Å (Nass, 2020). The protein contains 22 sulphur atoms and

the wavelength is close enough to the absorption edge to make

SAD phasing possible. This makes this data set suitable to see

to what extent partiality correction would improve phasing

success. For all merged intensity files a SAD phasing attempt

was run using phenix.autosol (Liebschner et al., 2019) and the

known protein sequence and a resolution cutoff of 2.3 Å.

As can be seen from the hybrid substructure search (HySS)

correlation coefficient in Fig. 14 and the R factors that the

automatic structure building and refinement achieved (Fig.

15), the improved merging efficiency is reproduced for the

anomalous signal too.

6. Discussion and conclusion

Using Gaussian basis functions, approximations were devel-

oped that have enough degrees of freedom to describe most of

the significant effects in macromolecular crystallographic

experiments. These approximations were used to simulate

diffraction patterns, which were visually very similar to

measured diffraction patterns. Partiality estimation and post-

refinement using these functions have reduced the number of

measurements necessary for a given data quality in merged

intensities. In the first example it reduced the number of

patterns required to achieve a given R factor by about a factor

of 2 compared with CrystFEL’s partialator. In the second

example S-SAD phasing succeeded with about a quarter of the

diffraction patterns. The range of data sets that were tested is

not comprehensive, however, and partialator is not the only

alternative, nor necessarily the best program, just the most

commonly used.

There are many differences between our method and

partialator, partiality estimation being only one of them.
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Figure 10
Histogram of partialities measured with an estimated photon counting
and background subtraction error of less than 1/8 from the granulin data
set (data set 1).

Figure 11
10 000 random pairs of predicted and measured intensities from the
random half data set of data set 1 that was used to to fit all parameters.

Figure 12
10 000 random pairs of predicted and measured intensities using the
parameters determined from the random half data set of data set 1 used in
Fig. 11. Note the slightly reduced correlation compared with Fig. 11.

Figure 13
Comparison of structure refinement results of the granulin data set (data
set 1) using phenix 1.18-3855 to a resolution of 1.8 Å of MGPCII, in
green, and partialator 0.9, in violet. The bold dots represent the free R
factor, the small circles represent the Rwork. The partiality model ggpm
gave the best result for partialator for all sizes of subsets that were tested.



Without exhaustive testing we are not able to tell precisely

which differences provide the greatest improvement. A

significant improvement can however be attributed to the

error model used, which has been shown to improve merging

on its own using a different approach (Brewster et al., 2019).

Another important difference is that our method profits

strongly from overprediction, adding many measurements

with mostly insignificant intensities, by integrating reflections

even if they are further removed from the ideal diffraction

condition. It may seem that overprediction should not

improve the precision of the merged result as strongly as it

does, especially when the added intensities are mostly small or

negative. However, we find that the small intensity values

outside the diffraction condition act as a powerful constraint

for determining reciprocal peak shape, mosaicity and strain.

Even though polychromatic diffraction of mosaic crystals

can be described qualitatively, automatic refinement has

proven to be difficult so far because predicted peak positions

can vary by more than half the inter-Bragg distances. There

are many more applications for approximating diffraction with

Gaussian basis functions in the way we described that remain

to be explored. Pixel-wise refinements, as done in the program

diffBragg (Mendez et al., 2020), should lead to even better

merging efficiency and a more precise detector geometry

refinement at the cost of more computation time. The model

could also be used to predict the intensity of peaks per frame

in a rotation series and therefore simplify the visual exam-

ination of the effectiveness of data processing, especially for

peaks lying along the axis of rotation.

Integrated peak intensities are less demanding for numer-

ical optimization than pixel-wise intensities because there are

many pixels per reflection. Furthermore, because peak

intensities are integrated over a larger pixel area on the

detector, the geometry description only needs to be accurate

enough for most of the peak intensity to fall within the inte-

gration area. A consequence of integration is the drastic

reduction of the number of constraints. Whereas pixel-wise

optimization uses thousands of pixels, albeit with somewhat

degenerate information (in a single Gaussian approximation

each peak on the detector can be described with six variables:

height, x and y coordinates of the centre, major and minor axis

and orientation of the elliptical shape; oversampling the shape

does not add constraints in this approximation), the number of

constraints in a traditional cell parameter and orientation

refinement during merging of serial crystallographic data sets

is just high enough to be clearly overdefined. This might mean

that for data sets of very weakly diffracting crystals and

without additional constraints a pixel-wise refinement is the

only option.

Lastly we want to emphasize the generality of this model.

The same model can be used to simulate diffraction patterns

and integrated intensities of serial monochromatic and poly-

chromatic crystallography experiments. The analytical nature

of this model makes analytical derivatives available, which is

useful for mathematical optimization. It also makes deriving

properties like peak locations and shapes and integrals over

angular ranges and areas practical. Together this opens up a

wide range of experiments where this model can be applied.

APPENDIX A
Derivatives and derived properties

A1. Peak shape on the detector

Looking at the predicted intensity as a function of the

position ðfs ssÞ
T on the detector, and assuming that the peak

intensity falls into a small angular range (<10�) where the

covariance matrices can be approximated as locally constant

with good accuracy, an approximation of the peak shape on

the detector can be derived by factoring out the (approxi-

mately) constant terms from the exponential. For straight-

forward computation and best approximation, the direction

with the highest intensity wmax
out should be determined; this can

be achieved with any function optimization algorithm.

Newton’s method is equivalent to iteratively completing the
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Figure 14
Maximum HySS correlation coefficient found during automatic SAD
phasing using phenix.autosol from A2A crystals (Nass, 2020) as a function
of the number of crystals used during merging. The entries in green are
for MGPCII, whereas the violet dots represent the results of partialator.

Figure 15
R factors of the refinement of structures built during automatic SAD
phasing using phenix.autosol from A2A crystals (Nass, 2020) as a function
of the number of crystals used. The entries in green are for MGPCII,
whereas the violet dots represent the results of partialator. The solid dots
are Rfree and the open circles are Rwork.



square for the exponential term and, because the target

function can be made very nearly quadratic by taking the

logarithm, it converges very quickly. The detector coordinate

system is commonly given by a 2-by-3 transformation matrix D

and an offset vector o. The outgoing wave direction is there-

fore given by the normed position vector:

wout ¼ D
fs

ss

	 

þ o

� �
D

fs

ss

	 

þ o

����
����
�1

: ð39Þ

The point ðfs0 ss0Þ
T denotes the peak position on the

detector, i.e. the position of maximum flux. Using ðfs0 ss0Þ
T

the normed directionality vector can be approximated to first

order as

wout ’ wmax
out þ

@ woutð Þ

@
fs

ss

	 
 fs0

ss0

	 

fs

ss

	 

�

fs0

ss0

	 
� �
:

Equation (14) for the flux on the detector can be expressed

as a scaled Gaussian (or a sum thereof), and using the line-

arized expression for the directionality vector the intensity on

the detector can be expressed as

j
fs

ss

	 

’ c exp

"
�

1

2

 
�

(
wmax

out þ
@ woutð Þ

@
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ss

	 
 fs0

ss0

	 


�
fs

ss

	 

�

fs0

ss0

	 
� �)
� l

!T

��1
½. . .�ð Þ

#
ð40Þ

with c the proportionality constant.

The scaled Gaussian, which only appears to be 3D, can be

rearranged to show the 2D form using suitable substitutions:

M ¼
@ woutð Þ

@
fs

ss

	 
 fs0

ss0

	 

;

�x ¼
fs

ss

	 

�

fs0

ss0

	 

;

e ¼ � wmax
out þM�xð Þ � l

� �T
��1 � wmax

out þM�xð Þ � l
� �

;

�0 ¼ �2MT��1M
� ��1

;

�
fs0

ss0

	 

¼ ��0�1MT��1 l� �wmax

outð Þ;

e ¼ �x��
fs0

ss0

	 
� �T

�0�1 �x��
fs0

ss0

	 
� �
þ l� �wmax

outð Þ
T��1 l� �wmax

outð Þ

��
fs0

ss0

	 
T

�0�1�
fs0

ss0

	 

;

�
fs0

ss0

	 

¼

0

0

	 


if the outgoing wave vector was optimal,

f
fs

ss

	 

’ c exp

(
�

1

2

h
�xT�0�1�x

þ l� �wmax
outð Þ

T��1 l� �wmax
outð Þ

i)
: ð41Þ

The peak on the detector can therefore be approximated by a

scaled 2D Gaussian (or several), potentially broadened by the

point spread function of the detector. The shape (without

broadening) is given by the 2D covariance matrix �0.

APPENDIX B
Asymptotically optimal prediction of a diffraction
image in areas with flux above threshold

The naive approach to calculating a diffraction image of a

snapshot would be to compute the multiplication of the source

with the object and the convolution with the Green’s function

via the FFT (fast Fourier transform). This holds in general in

kinetic far-field approximation even for non-crystals. For a

crystal the Fourier transform is sparse and this is usually

exploited by iterating over the Miller indices. The computa-

tional complexity is OðNhNkNlÞ where N is the number of

indices to be considered in each direction. Because the Ewald

sphere essentially is 2D we can come up with a solution to

compute this in OðN2Þ by using a region growing approach.

Every reflection that exceeds a threshold has at least one

neighbouring Miller index which has a virtual reflection at

most as far as half the inter-Bragg distance that would exceed

the threshold. Fig. 16 pictures a curve with some width going

through a mesh. The curve intersects only some nodes of the

mesh, but for every node that it does there is at least one face

(or enclosed volume for higher dimensions) that it intersects.

The path of the curve can be traced by testing neighbouring

faces (or volumes) for intersection iteratively.

To implement the set operations efficiently and to actually

achieve OðN2Þ asymptotic complexity, the hash table

patchmap (Brehm, 2019) was used, but most other data

structures with amortized constant lookups and insertions

would do as well because the limiting step is checking the

overlap in step 4.
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B1. Maximum flux of a virtual reflection in the range (h�1
2,

k�1
2, l�

1
2)

The maximum flux of any virtual reflection with fractional

coordinates closer to a given Miller index ðh; k; lÞ than any

other Miller index can be conservatively estimated by taking

the reflection at ðh; k; lÞ, and convolving its location with a

width equal to one unit of ðh; k; lÞ in reciprocal space while not

changing the normalization of equation (33). This distance

corresponds to a covariance matrix equal to half the reciprocal

unit cell times half the reciprocal unit cell transposed – note

the similarity to the result in equation (23). The approximation

is not sensitive to the assumed direction of maximum

diffraction intensity wmax, a rough estimate is sufficient. For

compactness the term kin � �wmax will be combined as lA:

max
h�1

2;k�
1
2;l�

1
2

4���
�� ���1=2

� kin � �wmax; lP;wT
max��wmax

� �� �2

¼ max
h�1

2;k�
1
2;l�

1
2

exp � 1
2 lA � lPð Þ

TwT
max�

�1
� wmax lA � lPð Þ

� �
 �2

4���
�� ��1=2

2�wT
max��wmax

�� ��

’

exp � 1
2 lA � lPð Þ

TwT
max �� þ

1
22 RRT

� ��1
wT

max lA � lPð Þ

h in o2

4���
�� ��1=2

2�wT
max��wmax

�� �� :

B2. One frame in a rotation series

The integrated intensity in a given outgoing direction wout

can be expressed as proportional to a Gaussian function [see

equation (8)]. The intensity integrated over an oscillation

range ½
; 
� is then proportional to

Z




� lA; G	 Uð Þ
�1

h

k

l

0
@

1
A

2
4

3
5;�

8<
:

9=
; d	; ð42Þ

where G	 is the rotation matrix with angle 	, U is the unit-cell

matrix (real space). It can be evaluated by first finding the

index values that will be excited to a significant degree in the

outgoing arc section described by the position on the detector,

the axis of rotation g and the oscillation range. Then the target

function can be approximated by a 1D Gaussian by developing

a small-angle approximation around the rotation with the

highest predicted intensity and factoring out the constant

terms of the 3D Gaussian. This 1D Gaussian integrated for the

given range yields a difference between two error functions:

Gmax is the rotation matrix that yields maximal diffraction,

lP ¼ Gmax Uð Þ
�1

h

k

l

0
@

1
A;

R




� lA; 	g� lP þ lPð Þ;�
� �

d	 ð43Þ
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A similar result is stated with equation (37) in section 3.6 of

Kabsch (2014).

APPENDIX C
Pixel-wise backgound estimation

Background estimation for the pixel-wise diffraction predic-

tion was done by minimizing the following function that acts

similarly to a boxed median filter or a boxed mean of the

middle 75%, which are both much easier to compute, but less

flexible and slightly less smooth:
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Figure 16
An illustration of region growing for identifying reflections with
significant contribution to the diffraction. The grey gridlines intersect at
integer combinations that are the Miller indices of the reflections in
reciprocal space. The Ewald sphere, or diffraction condition more
generally, is assumed to be a smooth function and much thinner in one
dimension than the others. It is caricaturized with an ellipse sector in
black. The algorithm starts at any of the light red or light blue squares. For
each blue square that intersects with the diffraction condition at any
point, the diffraction condition at the exact Miller index is evaluated. A
significant contribution is indicated with a blue dot, an insignificant
contribution with a red dot. For each blue square all new neighbours are
inspected for intersections in the same manner. Squares that do not
intersect the diffraction condition at any point are coloured in light red
and do not prompt the inspection of their neighbours.



Bðl; rÞ ¼
XN

log½ð1� 	Þ� yi; �i; �ið Þ þ 	uðyiÞ�

þ
X

adj: i;j

log � �i; �j;
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

i þ �
2
j

q	 
� �
: ð48Þ

	 was typically 1/4, u is the outlier distribution from equation

(30) and yi are the pixel values. The function is minimized by

finding the optimal values for �i and �i. The indices enumerate

the pixels and the second sum goes over all pairs of adjacent

pixels. This approach is very likely overcomplicated, but it did

not turn out to be a bottleneck and was good enough.

APPENDIX D
Theoretical distribution of partialities

If the intensities of reflections decline like a Gaussian function

when leaving the optimal diffraction condition, and because

the diffraction condition is essentially random, the distribution

of partialities should look like the distribution of function

values of a Gaussian distribution with uniform input. The

Gaussian function, scaled to a peak height and variance of 1, is

gðXÞ ¼ expð� 1
2 X2Þ. Its inverse function, not to be confused

with the inverse Gaussian distribution, is g�1ðXÞ =

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logðXÞ

p
. There is an ambiguity because gðXÞ is not

strictly increasing or decreasing, but it is symmetric around the

axis X = 0, and we can therefore restrict the analysis to the

increasing branch only. The random variable X is assumed to

be uniformly distributed on some region symmetric to 0 on a

support ½�a; a�. The probability density therefore is

f ðxÞ ¼ 1=2a and the cumulative distribution function

FðxÞ ¼
R

f ðxÞ ¼ x=2a. The cumulative distribution function of

the random variable Y ¼ gðXÞ is the distribution function of

X applied to the inverse function of g: P½gðXÞ< y� =

P½X 	 g�1ðyÞ� = F½g�1ðyÞ�, which is ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logðyÞ

p
�=2a. The

density function is its derivative, ½�2y2 logðyÞ��1=2=2a. In the

limit of a large interval ½�a; a� this is not a proper density

function any more, as the integral
R 1

0 ½�2y2 logðyÞ��1=2 dy is

divergent.
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Bücker, R., Hogan-Lamarre, P., Mehrabi, P., Schulz, E. C., Bultema,

L. A., Gevorkov, Y., Brehm, W., Yefanov, O., Oberthür, D., Kassier,
G. H. & Dwayne Miller, R. J. (2020). Nat. Commun. 11, 996.

Cowley, J. M. (1995). Diffraction Physics. Amsterdam: Elsevier
Science B. V.

Diamond, R. (1969). Acta Cryst. A25, 43–55.
Diederichs, K. (2010). Acta Cryst. D66, 733–740.
Dilanian, R. A., Williams, S. R., Martin, A. V., Streltsov, V. A. &

Quiney, H. M. (2016). IUCrJ, 3, 127–138.
Fletcher, R. (1970). Comput. J. 13, 317–322.
Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A.,

Grimes, J. M., Sauter, N. K., Sutton, G. & Stuart, D. I. (2015). Acta
Cryst. D71, 1400–1410.

Goldfarb, D. (1970). Am. Math. Soc. 24, 23.
Grant, D. F. & Gabe, E. J. (1978). J. Appl. Cryst. 11, 114–120.
Greenhough, T. J. & Helliwell, J. R. (1982a). J. Appl. Cryst. 15, 493–

508.
Greenhough, T. J. & Helliwell, J. R. (1982b). J. Appl. Cryst. 15, 338–

351.
Greenhough, T. J. & Helliwell, J. R. (1983). Prog. Biophys. Mol. Biol.

41, 67–123.
Greenhough, T. J., Helliwell, J. R. & Rule, S. A. (1983). J. Appl. Cryst.

16, 242–250.
Holton, J. M., Classen, S., Frankel, K. A. & Tainer, J. A. (2014). FEBS

J. 281, 4046–4060.
Kabsch, W. (2014). Acta Cryst. D70, 2204–2216.
Kirian, R. A., White, T. A., Holton, J. M., Chapman, H. N., Fromme,

P., Barty, A., Lomb, L., Aquila, A., Maia, F. R. N. C., Martin, A. V.,
Fromme, R., Wang, X., Hunter, M. S., Schmidt, K. E. & Spence,
J. C. H. (2011). Acta Cryst. A67, 131–140.

Kroon-Batenburg, L. M. J., Schreurs, A. M. M., Ravelli, R. B. G. &
Gros, P. (2015). Acta Cryst. D71, 1799–1811.

Kullback, S. & Leibler, R. A. (1951). Ann. Math. Stat. 22,
79–86.

LCLS (2022). LCLS CXI Specifications. https://lcls.slac.stanford.edu/
instruments/cxi/specifications.

Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B.,
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