
research papers

Acta Cryst. (2023). A79, 331–338 https://doi.org/10.1107/S2053273323001948 331

Crystal search – feasibility study of a real-time deep
learning process for crystallization well images

Yvonne Thielmann,a*‡ Thorsten Luft,b Norbert Zinta and Juergen Koepkea

aMolecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, Frankfurt am Main, 60438,

Germany, and bSystrade GmbH, Bockenheimer Landstrasse 47, Frankfurt am Main, 60325, Germany. *Correspondence

e-mail: yvonne.thielmann@hhu.de

To avoid the time-consuming and often monotonous task of manual inspection

of crystallization plates, a Python-based program to automatically detect crystals

in crystallization wells employing deep learning techniques was developed. The

program uses manually scored crystallization trials deposited in a database of an

in-house crystallization robot as a training set. Since the success rate of such a

system is able to catch up with manual inspection by trained persons, it will

become an important tool for crystallographers working on biological samples.

Four network architectures were compared and the SqueezeNet architecture

performed best. In detecting crystals AlexNet accomplished a better result, but

with a lower threshold the mean value for crystal detection was improved for

SqueezeNet. Two assumptions were made about the imaging rate. With these

two extremes it was found that an image processing rate of at least two times, but

up to 58 times in the worst case, would be needed to reach the maximum imaging

rate according to the deep learning network architecture employed for real-time

classification. To avoid high workloads for the control computer of the

CrystalMation system, the computing is distributed over several workstations,

participating voluntarily, by the grid programming system from the Berkeley

Open Infrastructure for Network Computing (BOINC). The outcome of the

program is redistributed into the database as automatic real-time scores

(ARTscore). These are immediately visible as colored frames around each

crystallization well image of the inspection program. In addition, regions of

droplets with the highest scoring probability found by the system are also

available as images.

1. Introduction

X-ray crystallography is the traditional method to determine

atomic structures of macromolecules and is still the dominant

technique based on the number of PDB (Protein Data Bank)

entries in 2020 (RCSB Protein Data Bank, 2021). The reso-

lution revolution in cryogenic electron microscopy (cryo-EM)

accelerated the determination of molecular structures (Kühl-

brandt, 2014); however, single-particle cryo-EM is fast

becoming a rival technique. Interestingly, purification condi-

tions optimized for cryo-EM structure determination often

show initial crystals in crystallization attempts (Stark & Chari,

2016; Chari et al., 2015). However, despite methodological

advances (Birch et al., 2018), crystallization and the phasing

problem remain the bottlenecks of macromolecular X-ray

crystallography. To overcome the obstacle of crystallization

itself, automatic high-throughput crystallization robots were

introduced (Thielmann et al., 2012) but the inspection of

thousands of crystallization images still remains a burden.

Starting with edge detection in 1991 from robotically

imaged crystallization trials (Ward et al., 1988; Zuk & Ward,

1991), crystallization image analysis has been subject to

ISSN 2053-2733

Received 12 August 2022

Accepted 2 March 2023

Edited by I. Margiolaki, University of Patras,

Greece

‡ Present address: Heinrich Heine University,

Institute of Biochemical Plant Physiology,

Universitätsstrasse 1, 40225 Düsseldorf,

Germany.

Keywords: biocrystallization; high-throughput

screening; deep learning; neural network;

U-Net; AlexNet; VggNet; ResNet; SqueezeNet;

BOINC.

Supporting information: this article has

supporting information at journals.iucr.org/a

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273323001948&domain=pdf&date_stamp=2023-06-02


research. Research projects have focused on edge-based

features (Wilson, 2002; Bern et al., 2004), texture analysis

(Cumbaa & Jurisica, 2010; Ng et al., 2014) and spectral

methods (Walker et al., 2007). This led to the classification of

images into different classes based on local or global features.

Additionally, different machine learning techniques have been

used such as naive Bayes classifier (Wilson, 2002), support

vector machines (Kawabata et al., 2006) or neural networks

(Walker et al., 2007; Szegedy et al., 2016). Training sets based

on human classification have been published by Snell et al.

(2008) and Rosa et al. (2018). The number of classes used and

classification in these classes still seem to depend on personal

preferences.

Attempts to classify crystallization experiments into as

many as ten classes with three different categories of preci-

pitate gave, according to Wilson (2006), worse results than the

reduced number of seven classes. A total of 16 crystal-

lographers classified 1207 images with an agreement for single

crystals of 84.7% and 91.6% for empty drops and a weighted

mean over all classes of 69.5% agreement. This indicates an

agreement ratio between any two crystallographers of only

about 70%. Snell et al. (2008) even found agreement between

the middle and the end of their study differing by 7% and

crystallographers tend to be biased when scoring their own

experiments (Bruno et al., 2018). Therefore, researchers have

been looking for some time for algorithms to support manual

evaluation or to make it completely redundant. The Machine

Recognition of Crystallization Outcomes (MARCO, https://

marco.ccr.buffalo.edu/) initiative claims to reach an accuracy

exceeding 94% with their deep learning attempt based on the

Inception-v3 architecture (Bruno et al., 2018).

Already in 2010 the BOINC (Berkeley Open Infrastructure

for Network Computing) system (Anderson, 2004) was used

by the Help Conquer Cancer (HCC) project for automatic

scoring of images from high-throughput protein crystallization

trials (Cumbaa & Jurisica, 2010; Kotseruba et al., 2012). Public

resource or volunteer computing uses internet-connected

computers whose owners voluntarily share unused capacities

with scientists having a huge computational demand but low

budget. Alternatively, grid or cloud computing share the same

goal of better utilization of existing computing resources but

have the advantage of being highly reliable as they are

managed by IT professionals, while volunteer computers

might get disconnected or shut down eventually.

Our goal was to use our existing crystallization image

database, which represents a quite diverse test set, in two ways.

The database encompasses crystallization drop images of

soluble and membrane proteins from initial screening to

crystals for high-resolution structure determination. These

images were scored by users with different levels of experi-

ence, from graduate student to skilled researcher. This data-

base was utilized to train and test different deep learning

architectures. By application of the BOINC approach to our

best results a pipeline was established to create an ARTscore

(automatic real-time scores) process. The ARTscore is

presented as a colored frame around the crystallization well

image and droplet regions with highest scores are highlighted

to facilitate the inspection by our users.

2. Methods

2.1. Training and testing set

For the training and validation sets we were able to make

use of all 33 872 manually classified images available in our

Rigaku CrystalMation database as at 24th October 2018.

Images were scored according to the 13 classes shown in Table

1, with the exception of the class rim as described in Section

2.2. All images were further processed for use in deep learning

attempts as described below. No further visual inspection of

the images was performed to control the quality of the scoring

by the users of our platform. In the case where only five classes

were used, the images were summarized for score numbers 23,

22 and 21 to crystal, for 13, 12 and 11 to precipitate, for 34 to

31 to other, 1 and 2 to clear and rim as the fifth class.

Images are produced by the three Rigaku Automation

Minstrel HT UV imagers of our fully automated Crystal-

Mation crystallization platform and stored in an Oracle

database (Thielmann et al., 2012). Users access their images

via XtalTrak (Rigaku Automation, Carlsbad, USA). Best

focused images of the crystallization wells generated from four

slices and one UV image are accumulated at a speed of about

16.25 s per well. With our standard procedure each crystal-

lization plate is kept in the incubators for 3 months and

imaged ten to 12 times during this period. If the imagers work

without interruption through this schedule, the incubators

could only be occupied with 207 plates. But if each of the six

incubators is loaded with the maximum of 650 crystallization

plates, our platform would have to be capable of imaging a

well in just 5.19 s. To achieve this imaging rate, for example the

number of slices has to be reduced. To keep up with this

outcome of images, a program capable of classifying images in

real time must be able to achieve this image processing rate. If

332 Yvonne Thielmann et al. � Crystal search feasibility study Acta Cryst. (2023). A79, 331–338

research papers

Table 1
Overview of all images used in deep learning distributed into the different
classes of the CrystalMation system.

Classes are ranked from high to low in priority. The class rim was created for
image preprocessing only. Other features in the class ‘clear with other
features’ might be a fiber or a scratch, for example.

Class Score No. Images UV pairs Chops

Crystals harvestable 23 3428 2527 21164
Crystals bad form 22 2123 1091 7733
Crystals overnucleated 21 2873 1409 14381
Precipitate 13 10994 56534
Precipitate bad 12 1142 13593
Precipitate good 11 1459 9569
Null experiment 34 515 2608
Other 33 788 7974
Spherolites 32 189 813
Phase separation 31 1946 7326
Clear 1 7613 159687
Clear with other

features
2 802 4603

Rim 1 18666
Total 33872 324651



the program needs a longer time t (s per well) for its calcu-

lations a parallelization of t/16.25 or up to t/5.19, respectively,

would be necessary to keep pace. Therefore, the aim of this

study was to set up a system capable of handling the necessary

image processing rate.

2.2. Image preprocessing

Since the original images produced by the imagers have

dimensions of 2452 � 2056 pixels and deep learning networks

are usually capable of processing images with about 2562

pixels, the image size had to be reduced considerably. Initially

the size could be shrunk by searching for the droplet inside the

well, but this did not reduce the dimensions of the image far

enough. Thus, in addition, the problem had to be sliced into

smaller chops. This could either be done by shifting a smaller

window in each direction in small steps over the larger image

or by calculation of the smallest overlap necessary to cover the

whole image by these smaller chops. Both attempts were used

here.

To calculate the smallest overlap with hI and wI, the height

and width of the image I, and hC and wC, the height and

width of the chop C, the numbers of overlaps are the integer

divisions n = hI/hC and m = wI/wC in the two dimensions.

The distance d of the two overlaps of each chop become

dh ¼ ½ðnþ 1ÞhC � hI �=n and dw ¼ ½ðmþ 1ÞwC � wI �=m,

respectively. For the i chops in height the chops start at

xs
i ¼ ihC � idh and end at xe

i ¼ ðiþ 1ÞhC � idh while the j

chops in width start at ys
j ¼ jwC � jdw and end at

ye
j ¼ ðjþ 1ÞwC � jdw. This attempt was used to prepare chops

of the droplets used for the training of the network.

To search for the droplets inside the well another deep

learning approach was used. Segmentation of the input image

is achieved with the U-Net architecture by coupling a

convolution network with a deconvolution network (Ronne-

berger et al., 2015; Zhixu, 2018). The contracting path is a

typical convolutional network that consists of repeated

application of convolutions, each followed by a rectified linear

unit (ReLU) and a maximum pooling operation. During the

contraction, the spatial information is reduced while feature

information is increased. The expansive pathway combines the

feature and spatial information through a sequence of up-

convolutions and concatenations with high-resolution features

from the contracting path. The graphic program gimp was

employed to annotate a training set of 214 masks around the

droplets found in these images. The output of the U-Net

training is an hdf5 file (hierarchical data format version 5,

https://www.hdfgroup.org/solutions/hdf5/), which will be used

later in the classification process.

In a next step the images cropped to the size of the droplet

are used to prepare smaller chops, useful for training with the

four different network architectures. The droplet images are

chopped according to the above smallest overlap algorithm

and contours inside these chops are used for various tasks.

Images classified by crystallographers as containing crystals

are checked together with their UV mate for contours. Only

when both contours were above a threshold were the images

accepted as protein crystal images for training. Unfortunately,

the number of UV pairs was much smaller than the scored

images found before (Table 1). Also chops classified as

precipitate (score Nos. 11–13) or other (score Nos. 31–34)

were only accepted when their threshold was exceeded to

avoid an overweighting of these classes.

We observed in first runs frequent misinterpretations of

chops containing a part of the droplet rim as the class crystals

harvestable (score No. 23). To avoid this misinterpretation in a

first attempt, chops at the image border were given an indi-

vidual threshold which could be higher than the one for chops

of the image center. Unfortunately, this measure was not very

successful. Much better was the attempt to select from images

classified by the users of the CrystalMation system as clear

drops. The chops from the image border which contained

contours above a threshold were used to set up the new class

called rim. It had the same score number 1 as the class clear.

After the introduction of this new class rim for deep learning,

the number of misinterpretations remained insignificant.

2.3. Network architectures

Four deep learning architectures were tested according to

their performance for a real-time deep learning classification

of the images extracted from our database.

The deep convolutional neural network (CNN) developed

by Krizhevsky et al. (2012) of the University of Toronto for

the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) (Russakovsky et al., 2015) in 2010 is usually named

after the first author, AlexNet. The network contains five

convolutional and three fully connected layers with weights

which finally feed into softmax. The depth of the AlexNet

network means it is computationally expensive, but it is made

feasible due to the utilization of GPUs during training.

AlexNet was originally written in CUDA to run with GPU

support.

An early attempt to generate deeper convolutional network

architectures was the work of the Visual Geometry Group

(Vgg) from the University of Oxford for ILSVCR-2014

(Simonyan & Zisserman, 2015). They started with 11 and

increased their network successively to 13, 16 and 19 weight

layers. With the number of layers increasing the number of

filters learned increased as well, doubling with every

maximum pooling applied. To train 16 or even 19 layers was

very time consuming at that time and resulted in a huge model

for only a poor gain. In this work we applied a VggNet of

depth 16.

The depth of a network remained of central importance in

many visual recognition tasks. Residual network (ResNet)

architectures were constructed to allow for substantially

deeper networks and these types of networks can gain higher

accuracy from their increased depth (He et al., 2015). To

circumvent the degradation error which generates a higher

error with the increased number of layers, the authors have

introduced shortcut connections skipping one or more layers

and performing identity mapping added to the output of the

shortcut stacked layers. We used here a ResNet with 50 weight

research papers

Acta Cryst. (2023). A79, 331–338 Yvonne Thielmann et al. � Crystal search feasibility study 333



layers (i.e. convolutional or fully connected layers) prior to the

final softmax classifier.

The SqueezeNet architecture was developed to reduce the

model size while keeping the possible accuracy that can be

reached currently with modern CNNs (Iandola et al., 2017).

The aim of this architecture was to reach an accuracy

comparable with that of AlexNet with the ILSVRC-2012

ImageNet data set (Deng et al., 2009). The model size reduc-

tion is achieved by drastically reducing the number of para-

meters from 60 million for AlexNet to 1.2 million, and the

subsequent usage of deep compression (Han et al., 2016)

reduced the number of parameters even further to 421 098. In

Table 2 the model size, the number of weight layers and the

computation times of the investigated networks are listed.

Compared with AlexNet we got a model size reduction of

nearly 77 times with SqueezeNet for our data.

The Python implementations of Rosebrook (2017) were

used to install the four networks on our workstations. They

utilize multiple GPU support by employing the MXNet library

(Chen et al., 2015). Our data were processed with the MXNet

im2rec tool to create efficiently packed record files which

reduced the file size of the training set by a factor of 3.4

compared with a respective hdf5 file. All our training attempts

were carried out on workstations hosting four NVIDIA

TITAN Xp GPUs. Learning was started with a learning rate of

1e�2, subsequently lowered stepwise to 1e�5 and stopped after

stagnation with the number of epochs listed in Table 2. The

accuracy reached and loss function for training and validation

sets are listed in additional columns.

To understand the deep learning performance better, we

compared the two best architectures with each other and also

used the database of the MARCO initiative for this (MARCO,

2018).

2.4. BOINC installation

In order to ensure the unrestricted operation of a program

on the computers of volunteers, executables for all used

operating systems must be provided on the BOINC server.

Python is an interpreted language; therefore the script needs

to be frozen in the Python version used, with all libraries and

modules used by a certain tool becoming independent from

the Python installation. Only the freezing tools cx_Freeze and

pyInstaller work on all three operating systems Linux,

Windows and OsX, and only pyInstaller is able to freeze the

code into a single executable file (The Hitchhiker’s Guide to

Python: Freezing Your Code, https://docs.python-guide.org/

shipping/freezing/). The Python libraries skimage and

MXNet prevent the freezing of our code with these tools.

Therefore, we are currently restricted to BOINC participants

that have miniconda installed (https://docs.conda.io/en/latest/

miniconda.html), to keep the demands (download and disk

space of 5 GBytes with all libraries) on the clients low.

The data preparation for processing in BOINC is realized

with scripts and based on a client/server architecture. The

BOINC server comes by default with the core components

scheduler, feeder, transitioner, validator, assimilator and file

deleter (Fig. S1 in the supporting information). Its installation

in a docker container combines a single application (BOINC)

with all dependencies like libraries, utilities and static data in

one image file (Docker, 2019; BOINC Project Cookbook,

2019). Therefore, containers can be compared with a light-

weight virtualization. With the docker container, the complete

BOINC server, including web application and database, is

independently stored and transportable by the operating

system. This means that all running core components within

the docker container can be reset or reinstalled at any time.

The core components start automatically after the start of the

container and are ready for operation. The transitioner

provides the archive and application in the download direc-

tory for the clients to upload. The scheduler distributes the

work packages to the clients and the validator examines the

result after processing. The assimilator (customized script)

stores the results in the results directory before the file deleter

deletes them from BOINC.

3. Results

3.1. Automatic scoring

For the evaluation of the crystallization plates, a Python

program was written that utilizes first the U-Net model to

locate the droplet inside a well and second the MXNet model

to classify chops of the droplet image. The chop was shifted in

this program by steps of s pixels across the image and eval-

uated according to the MXNet model at each of these posi-

334 Yvonne Thielmann et al. � Crystal search feasibility study Acta Cryst. (2023). A79, 331–338

research papers

Table 2
Training and validation accuracy of four network architectures for the 13 classes listed in Table 1.

The table also includes the training and validation accuracy for our attempts to use only five classes for AlexNet as well as the MARCO data. The loss function
(Loss) is used to optimize a deep learning algorithm, thus the smaller the loss the better the prediction fits the data. The accuracy (Acc.) is a measure of how many
predictions were correct compared with the total number of predictions. Top5 is the accuracy for only the 5 best predicted labels of the model.

Model size Weight No. of Total time Time per
Training (%) Validation (%)

Network architecture (MB) layers epochs (h:min:s) epoch (min) Acc. Top5 Loss Acc. Top5 Loss

AlexNet (13) 223 8 100 04:14:20 2.54 83.7 98.9 0.48 78.2 97.4 0.73
AlexNet (5) 83.5 0.45 82.3 0.51
AlexNet (MARCO) 90.6 0.26 88.5 0.32
VggNet 513 16 70 15:08:17 12.98 78.0 97.1 0.68 76.5 96.5 0.77
ResNet 90 50 55 05:32:02 6.04 85.9 99.2 0.41 79.5 97.7 0.66
SqueezeNet 2.9 18 200 08:26:48 2.53 81.7 98.3 0.54 79.4 97.6 0.64



tions. Steps with s = 50 pixels gave the best results in our

hands. In a next program step the outcome of these chops was

scored according to a scheme ranking from high to low in the

following order: crystal classes highest, precipitate and other

next, and clear with the lowest priority. If a crystal class is

found, its score is accounted for the whole image and the same

happens to the other classes in descending order. All scores in

this procedure have further to exceed a threshold c which was

set to 85% accuracy. Colored frames around the chops with

the n highest scores are drawn into an output image (Fig. 1,

Fig. S2).

To validate the classifications the four networks achieved,

16 crystallization plates were completely scored in one

inspection by volunteers and their scoring into the classes

crystal, precipitate, other and clear was compared with the

outcome of the four network classifications. The hits listed

in the supporting information files CrystalSearchSuppl1.xslx

(all network architectures) and CrystalSearchSuppl.2.xslx

(comparison of AlexNet only) were then used to calculate

success rates, which are listed in a column next to the hits. The

total weighted means were calculated from the individual

weighted means of each class, weighted according to their

frequency, and finally listed in Table 3. With a weighted mean

of 77.1% over all classes for the 16 test crystallization plates,

SqueezeNet gave in our hands the best results. But with

success rates for crystal detection of up to 90% for three of the

crystallization plates and 76.9% in the mean for the 2400

images, AlexNet scored better. Only when we lowered the

above threshold c to 80% accuracy for SqueezeNet could the

mean value for crystal detection be improved from 69.9% to

the second best value of 74.3%, while the overall weighted

mean changed only insignificantly to 77.0%.

If AlexNet was trained in our installation with only five

possible classes, the performance on the class crystal

decreased to only 64.1% and also a decreased weighted mean

for all classes was the result (68.3% compared with 74.2% for

13 classes). If AlexNet was trained with the MARCO database

the success rate on crystal detection increased to 81.4% but

the classes precipitate and other only matched in 37.1% and

research papers

Acta Cryst. (2023). A79, 331–338 Yvonne Thielmann et al. � Crystal search feasibility study 335

Figure 1
Top row: original crystallization well images extracted from the Oracle database. Bottom row: processed images reduced to the droplet size with
ARTscores highlighting the chops with highest probability for a certain class (red, crystal; blue, precipitate; white, rim; gray, clear; magenta, null
experiment).

Table 3
Mean success rates (%) of the four employed network architectures for
the classes crystal, precipitate, other and clear.

The overall weighted means of the four network architectures are listed in the
rightmost column. AlexNet was trained with 13 and five classes for our own
data and in addition the MARCO data.

Architecture Crystal Precipitate Other Clear
Weighted
mean

AlexNet (13 classes) 76.88 69.81 55.48 85.10 74.16
AlexNet (5 classes) 64.09 71.33 51.04 73.76 68.33
AlexNet (MARCO) 81.42 37.11 7.39 67.56 69.42
VggNet 60.05 73.53 54.24 71.18 68.07
ResNet 72.44 66.31 62.03 77.26 70.05
SqueezeNet (c = 85) 69.86 78.55 67.14 89.95 77.09
SqueezeNet (c = 80) 74.31 76.46 66.77 87.96 77.00



7.4% of cases, and the overall weighted mean decreased to

69.4%.

3.2. Image processing rate

Based on an 8 CPU workstation, it was possible to calculate

the time necessary to evaluate a well of a crystallization plate

in the respective network as shown in Table S1. According to

the considerations made earlier, the parallelization shown in

the last two rows of the table would be necessary to keep pace

with the appearance of new crystallization plate images, either

in the standard setup with 16.25 s per well (penultimate row)

or with the highest possible imaging rate of 5.19 s per well (last

row).

To reach this grade of image processing rate BOINC was

employed to guarantee a real-time processing of the images

with the favored network architectures AlexNet or Squeeze-

Net. The participation of the computers available in our

internal IT network was sufficient. All these machines had the

same Python environment installed. A much higher paralle-

lization would only be required if we wished to process all

15 666 284 (17th October 2019) crystallization images

currently available in our CrystalMation database, e.g. a

parallelization of 183 or 216 to finish the processing of all

database entries based on AlexNet or SqueezeNet, respec-

tively, within a month.

To run the evaluation program under the regime of BOINC,

additional scripts were written. The script create_work4cf.py

queries search patterns for image types and generates an SQL

command from them, which extracts the corresponding

information from the Oracle database. In the second part of

the script the image names are compared with files in the file

system and the images are packed into ZIP files (archives) and

stored in the file system of the BOINC server. Another script

finalizer-2dir.py, outside the BOINC container, checks the

existing results and the score in the Oracle database. The

evaluated score is stored in a CSV file for later processing.

This step was introduced to avoid annoying users with false

positives.

The scripts set_autoscore-dir.py and finalizer-2dir.py are

started as a service and work fully automatically. Images

generated by the evaluation program showing frames with

probabilities for highest scoring areas of the crystallization

droplet (Fig. 1) can not yet be written into the database by the

second script. These images would be helpful to analyze cases

where e.g. the evaluation fails.

The script set_autoscore-dir.py is the last step in the process

chain. It takes the CSV file created by the finalizer and imports

the results into the score table of the Oracle database of

XtalTrak. Here the ARTscore is visible for users to assist in

image classification.

4. Discussion

We were successful in creating a fully automatic programmed

system able to process the images created by our Crystal-

Mation system in real time by employing only in-house

workstations.

Since the image scoring of our training set was generated

from all the users of our CrystalMation system for their own

purposes (about 40 researchers, from graduate to experienced

crystallographer) the scoring might be quite heterogeneous. It

is probably not as unambiguous as the scoring for the

MARCO database (MARCO, 2018). Therefore it was inter-

esting to compare the learning accuracy of the four network

architectures and combine the best of our installation with the

database of MARCO data.

AlexNet and SqueezeNet performed best with our database

with a success for crystals and a weighted mean of 76.9% and

74.2% for AlexNet and 74.3% and 77.0% for SqueezeNet,

respectively. If the training of AlexNet was performed with

five instead of 13 classes the success rates for the class crystal

and also the weighted mean on all classes decreased. Most

interestingly, the accuracy on the class crystal and on the class

clear dropped by about 12 percentage points (see Crystal-

SearchSuppl2.xlsx in the supporting information). When we

compared AlexNet trained with our database and the

MARCO database, the success rate on the class crystal

increased clearly. But the overall weighted mean decreased

considerably as the classes precipitate and other were only

successfully identified in 37.1% and 7.4% of cases, respec-

tively. The training on the MARCO database did not match

these classes of images of our CrystalMation system. There

can be several reasons for this, e.g. different drop appearance

(vapor diffusion versus under oil crystallization), drop shape

(different for membrane and soluble proteins), different

imaging systems, also different granular or gel-like appear-

ances of precipitates and phase separations and different

considerations on how to use the class other.

The evaluation of UV images for the class crystal might

have prevented an overfitting of the class crystal in the current

work, but it has to be critically rethought. For salt crystals it

might work very well to exclude these during image evalua-

tion. But for crystals with chromophores it might be a disad-

vantage as their UV mate might not show a crystal as well, but

this result should not be excluded. It could be evaluated

manually by the inspection of colored images, which are

regularly taken for colored samples.

Manually created scores may not be overwritten; therefore,

the automatic evaluations are dated to the time of the

respective inspection. This ensures that they are younger than

any possible manual rating and can therefore not overwrite

them. However, manual evaluations of older inspections are

overwritten by the automatic scoring. This is a serious

problem. Here, it would be desirable to keep both evaluations

with the image for later considerations. Drop regions with

highest scores should be displayed as additional information.

To process the images of the whole database a much higher

parallelization is necessary. This is the reason why we need to

succeed in freezing the evaluation program into a single

executable. When we can provide executables for all common

operating systems, the evaluation program can be distributed

to enough clients. This is necessary to process the image files in

a reasonable timescale. Unfortunately, our efforts have so far

ended up in extremely large executable files of up to 5 Gbytes

336 Yvonne Thielmann et al. � Crystal search feasibility study Acta Cryst. (2023). A79, 331–338

research papers



size, if all necessary libraries are included. This is too large to

be handled by the BOINC clients. In future attempts this

problem can be overcome by translating the Python code with

a tool like Nuitka (Nuitka User Manual, https://nuitka.net/doc/

user-manual.html) into a C++ program which is compiled in a

next step into a standalone executable. In addition, the use of

C++ will lead to a speed gain of currently 258% (Hayen, 2023).

By working on our original goal of determining the level of

parallelization required, we made an unexpected discovery:

our program creates by accident the ideal conditions to gain

the ground-truth bounding boxes for a future project with

faster regions with CNN features (R-CNN). Reprogramming

our evaluation program at the scoring process will enable us to

output the respective best 2562 chops as bounding boxes and

to distribute them to the appropriate class folders instead of

having the tedious work of hand labeling. Further improve-

ment of the Python code itself could be achieved through the

use of R-CNN (Girshick et al., 2014). The use of R-CNN

techniques could lead to a dramatically higher object detec-

tion performance compared with the simple sliding windows

algorithm used here.

5. Conclusion

The deep learning architecture SqueezeNet was used to

establish an automatic scoring algorithm to simplify the

scoring of our crystallization images in the database for our

users. More than 74% of the crystals were detected by the best

performing algorithm SqueezeNet with an overall accuracy of

77.0% on all classes. The output of SqueezeNet is the

ARTscore. It is displayed as a colored frame around the

crystallization image and can be used to facilitate the

screening for crystals. It can also be used to score all unscored

crystallization conditions left in the database. Once these are

tagged with the ARTscore for the class crystal they are

available for database screening of successful crystallization

conditions. These could be used to design smarter crystal-

lization conditions based on different protein superfamilies

(for membrane proteins) or the outcome could even be used

to predict new crystallization conditions (for soluble proteins).

The current algorithm was trained on vapor diffusion drops.

If microbatch or in meso crystallization drops were included in

a similar number compared with vapor diffusion drops in the

training set, these images could also be applicable to the

algorithm. Microbatch or in meso crystallization might need

adaptations for the special appearance of the drops in each

case, as was done for the class rim for the identification of the

drop edge in this study. It might be very useful to focus more

strongly on the use of UV crystallization images as artifacts

from different plate shapes and surface borders are less

pronounced in these images.

Acknowledgements

We thank our colleagues Barbara Rathmann and Oliver H.

Weiergräber for providing us with a complete scoring after

visual inspection of several crystallization plates. We thank

Hartmut Michel for proofreading the manuscript and Adrian

Rosebrook for the idea to try U-Net for the segmentation

problem in droplet localization. Open access funding enabled

and organized by Projekt DEAL.

Funding information

The following funding is acknowledged: Max-Planck-Gesell-

schaft.

References

Anderson, D. P. (2004). BOINC: A System for Public-Resource
Computing and Storage. Fifth IEEE/ACM International Workshop
on Grid Computing, Pittsburgh, PA, USA, pp. 4–10. https://doi.org/
10.1109/GRID.2004.14.

Bern, M., Goldberg, D., Stevens, R. C. & Kuhn, P. (2004). J. Appl.
Cryst. 37, 279–287.

Birch, J., Axford, D., Foadi, J., Meyer, A., Eckhardt, A., Thielmann, Y.
& Moraes, I. (2018). Methods, 147, 150–162.

BOINC (2019). BOINC Project Cookbook, https://github.com/
marius311/boinc-server-docker/blob/master/docs/cookbook.md.

Bruno, A. E., Charbonneau, P., Newman, J., Snell, E. H., So, D. R.,
Vanhoucke, V., Watkins, C. J., Williams, S. & Wilson, J. (2018).
PLoS One, 13, e0198883.

Chari, A., Haselbach, D., Kirves, J.-M., Ohmer, J., Paknia, E., Fischer,
N., Ganichkin, O., Möller, V., Frye, J. J., Petzold, G., Jarvis, M.,
Tietzel, M., Grimm, C., Peters, J.-M., Schulman, B. A., Tittmann, K.,
Markl, J., Fischer, U. & Stark, H. (2015). Nat. Methods, 12, 859–865.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B.,
Zhang, C. & Zhang, Z. (2015). arXiv:1512.01274.

Cumbaa, C. A. & Jurisica, I. (2010). J. Struct. Funct. Genomics, 11, 61–
69.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009).
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 248–255.

Docker (2019). Docker Documentation, https://docs.docker.com.
Girshick, R., Donahue, J., Darrell, T. & Malik, J. (2014).

arXiv:1311.2524.
Han, S., Mao, H. & Dally, W. J. (2016). arXiv:1510.00149v5.
Hayen, K. (2023) Nuitka. https://nuitka.net.
He, K., Zhang, X., Ren, S. & Sun, J. (2015). arXiv:1512.03385.
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. &

Kreutzer, K. (2017). arXiv:1602.07360.
Kawabata, K., Takahashi, M., Saitoh, K., Asama, H., Mishima, T.,

Sugahara, M. & Miyano, M. (2006). Acta Cryst. D62, 239–245.
Kotseruba, Y., Cumbaa, C. A. & Jurisica, I. (2012). J. Phys. Conf. Ser.

341, 012027.
Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). Advances in

Neural Information Processing Systems 25, edited by F. Pereira,
C. J. C. Burges, L. Bottou & K. Weinberger, pp. 1097–1105, https://
papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html

Kühlbrandt, W. (2014). Science, 343, 1443–1444.
MARCO (2018). MARCO database, https://ubir.buffalo.edu/xmlui/

handle/10477/77793.
Ng, J. T., Dekker, C., Kroemer, M., Osborne, M. & von Delft, F.

(2014). Acta Cryst. D70, 2702–2718.
RCSB Protein Data Bank (2021). Statistics on all Released Structures.

https://www.rcsb.org/stats/all-released-structures.
Ronneberger, O., Fischer, P. & Brox, T. (2015). In Medical Image

Computing and Computer-Assisted Intervention, edited by N.
Navab, J. Hornegger, W. Wells & A. Frangi. MICCAI 2015.
Lecture Notes in Computer Science, Vol. 9351. Cham: Springer.

Rosa, N., Ristic, M., Marshall, B. & Newman, J. (2018). Acta Cryst.
F74, 410–418.

research papers

Acta Cryst. (2023). A79, 331–338 Yvonne Thielmann et al. � Crystal search feasibility study 337

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB33


Rosebrook, A. (2017). Deep Learning for Computer Vision with
Python: Image Net Bundle, Vol. 3. PyImageSearch.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C. &
Fei-Fei, L. (2015). Int. J. Comput. Vis. 115, 211–252.

Simonyan, K. & Zisserman, A. (2015). arXiv:1409.1556.
Snell, E. H., Luft, J. R., Potter, S. A., Lauricella, A. M., Gulde, S. M.,

Malkowski, M. G., Koszelak-Rosenblum, M., Said, M. I., Smith,
J. L., Veatch, C. K., Collins, R. J., Franks, G., Thayer, M., Cumbaa,
C., Jurisica, I. & DeTitta, G. T. (2008). Acta Cryst. D64, 1123–1130.

Stark, H. & Chari, A. (2016). Microscopy (Tokyo), 65, 23–34.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Z. Wojna, Z. (2016).

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818–2826.

Thielmann, Y., Koepke, J. & Michel, H. (2012). J. Struct. Funct.
Genomics, 13, 63–69.

Walker, C. G., Foadi, J. & Wilson, J. (2007). J. Appl. Cryst. 40, 418–
426.

Ward, K. B., Perozzo, M. A. & Zuk, W. M. (1988). J. Cryst. Growth,
90, 325–339.

Wilson, J. (2002). Acta Cryst. D58, 1907–1914.

Wilson, J. (2006). Advances in Data Mining, Applications in Medicine,
Web Mining, Marketing, Image, Signal Mining, edited by P. Perner,
pp. 459–473. Berlin, Heidelberg: Springer.

Zhixu, H. (2018). Implementation of Deep Learning Framework –
Unet, Using Keras. https://github.com/zhixuhao/unet.

Zuk, W. M. & Ward, K. B. (1991). J. Cryst. Growth, 110, 148–155.

338 Yvonne Thielmann et al. � Crystal search feasibility study Acta Cryst. (2023). A79, 331–338

research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ik5007&bbid=BB24

