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As an alternative approach to X-ray crystallography and single-particle cryo-

electron microscopy, single-molecule electron diffraction has a better signal-to-

noise ratio and the potential to increase the resolution of protein models. This

technology requires collection of numerous diffraction patterns, which can lead

to congestion of data collection pipelines. However, only a minority of the

diffraction data are useful for structure determination because the chances of

hitting a protein of interest with a narrow electron beam may be small. This

necessitates novel concepts for quick and accurate data selection. For this

purpose, a set of machine learning algorithms for diffraction data classification

has been implemented and tested. The proposed pre-processing and analysis

workflow efficiently distinguished between amorphous ice and carbon support,

providing proof of the principle of machine learning based identification of

positions of interest. While limited in its current context, this approach exploits

inherent characteristics of narrow electron beam diffraction patterns and can be

extended for protein data classification and feature extraction.

1. Introduction

Machine learning (ML) techniques enable extraction of

sophisticated features from large data sets and can generate

state-of-the-art performance in a variety of biomedical appli-

cations (Zhang et al., 2021). Algorithms based on deep

learning architectures, which represent a custom set of non-

linear input–output estimators for the given data, can surpass

expert human performance and successfully model very

complex phenomena (Ede, 2021).

Compared with traditional learning techniques, where most

of the applied features need to be marked by a domain expert,

deep learning architectures can extract the feature space in an

incremental manner and provide an end-to-end ‘black box’

solution. This eliminates the need for manual feature extrac-

tion and domain expertise. However, they lack interpretability

and require a large amount of training data (Bailly et al., 2022).

Training is computationally expensive and time-consuming

due to the number of parameters. These limitations have been

partially removed by better availability of high-end computers,

an exponentially increased quantity of data being generated,

and greater interest in the area from both the industrial and

scientific sectors (Bishop, 2013).

In addition, the number of applications in transmission

electron microscopy (TEM) is growing (Treder et al., 2022;

Yonekura et al., 2021). The emergence of direct electron and

hybrid pixel detectors (HPDs) (Fröjdh et al., 2022; Takaba et

al., 2021) has changed the cryo-EM (cryo-electron micro-

scopy) field significantly (Faruqi & McMullan, 2018). If
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combined with advanced data collection and analysis techni-

ques, this could enable structural biologists to reveal the

structure of complex biomolecular machines at near-atomic

resolution. However, due to the generation of large amounts

of data, traditional data handling strategies are becoming

increasingly unwieldy. It is now possible to capture images at a

relatively high frame rate compared with other types of

detectors in the field, and existing data analysis pipelines

struggle to keep up with the data production rate. Huge

amounts of data need to be kept, and meeting the rate of data

growth and the transfer rate is challenging for storage devices

(Horwath et al., 2020; Taheri et al., 2016). ML algorithms are

likely to have a drastic impact on this bottleneck.

Our group is analyzing far-field electron scattering diffrac-

tion data generated by diffracting a 10 to 60 nm narrow,

parallel electron beam on a protein sample. By assuming the

beam is not much wider than the size of the protein of interest,

this approach is likely to improve the signal-to-noise ratio

compared with cryo-EM imaging (Latychevskaia & Abra-

hams, 2019). HPDs have proven to be better for these types of

data than the direct electron detectors used for cryo-TEM

(Fröjdh et al., 2022). With more than 1000 frames per second

and a high dynamic range, data collection pipelines need to

cope with rates of up to 10 Gb s�1 during multi-minute runs

for just 512 � 512 pixels. The tiling of these small detectors in

the near future implies a quadratic increase in throughput.

However, only a small amount of the recorded diffraction

patterns will be used for structure determination. Therefore, it

is vital to introduce new concepts in data selection to identify

the positions of interest.

Here we propose neural networks and traditional ML

algorithms for the initial selection of diffraction data. We show

that convolutional, fully connected neural networks and

support vector machines can successfully generate a model for

identifying electron diffraction patterns of amorphous ice,

crystalline ice and carbon on holey carbon EM grids.

2. Material and methods

2.1. Sample preparation

The samples were prepared on a holey carbon coated, 400

mesh copper grid. Grids were loaded with a Tris–HCl buffer

solution (20 mM, pH 7.5). The samples were frozen using

Vitrobot at 90% humidity and 22�C, with blot force 10 and a

blotting time of 4 s.

2.2. Data collection

2.2.1. EM hardware. The data were collected using a Jeol

JEM 2200FS transmission electron microscope with a Gatan

626 cryo-holder. This microscope is equipped with a Schottky

field emission gun and a HR (high-resolution) pole piece with

a spherical aberration of 1 mm. A Nanomegas DigiSTAR scan

generator with custom software was used for orthogonal

scanning of the sample in a stepwise mode with a parallel,

narrow beam (50–60 nm in diameter), with successive posi-

tions being 30 nm apart. The overlap between neighboring

exposed areas was therefore approximately 39%. Data were

recorded on an ASI Cheetah Medipix3 camera (512 � 512

pixels, sized 55 � 55 mm).

2.2.2. Beam alignment. First, standard alignment for a Jeol

JEM 2200FS was executed in ‘TEM mode’ at alpha 2 or 3.

(Alpha values are a set of predetermined ratios between the

strengths of condenser lenses that control the range of

convergence angles on Jeol microscopes. When aligning the

microscope for a small parallel beam, the alpha value is set to

1, allowing the beam to remain nearly parallel even at small

beam diameter and with a convergence semi-angle of less than

0.1 mrad.) Special care was needed for pivot point alignment

(because of the radiation hardness of the Medipix3 detector,

this can be performed directly on the detector with a

converged beam using a 10 or 30 mm aperture) and alignment

of the rotation center using the high-tension (HT) wobbler. To

find the correct diffraction plane, the selected-area (SA)

aperture was inserted and centered, followed by full spreading

of the beam. This caused the SA aperture to select the central,

most parallel bundle of the beam. Hereafter, the diffraction

focus was set such that the direct beam diameter was mini-

mized and not adjusted further.

To create the smallest semi-parallel beam possible for a Jeol

JEM 2200FS, we then switched from ‘TEM mode’ to ‘nano-

beam diffraction mode’ (NBD) and spot 1 and alpha 1 were

selected for the next step. When switching to NBD mode, the

gun and objective lens alignments are retained. The CL1 and

mini condenser lenses are fully excited at these NBD settings

which leaves only the CL3 lens to be adjusted. To achieve the

smallest parallel beam possible, the CL3 lens was adjusted to

minimize the direct beam diameter, resulting in a semi-parallel

beam with a diameter of 50–60 nm.

In scanning applications for this microscope, a standard

dark-field (DF) detector is typically used, which does not

record the direct beam. In that case, descan coils are not

required to stabilize beam movement, as the higher-angle

diffraction signal captured by the DF detector is relatively

insensitive to minor fluctuations of the direct beam position.

However, we recorded the direct beam and the low-angle

diffraction data too, which are more susceptible to minor

movements. Because the microscope had no accessible descan

coils, minimization of the direct beam position movement at

the detector plane during scanning was required due to the

long distance between the last crossover of the beam and the

camera. The movement could be minimized by optimizing the

pivot point alignments. Specifically, extensive refinements of

beam tilt pivot points could finally decrease the diffraction

pattern movement for each spot by 30%. However, the

movement could not be completely neutralized on the

experimental system.

2.2.3. Data collection. Where the ice thickness did not

obfuscate the carbon edges of the holes in image mode, scan

areas were randomly selected and could include ice crystal

contamination. Every scan area was scanned twice, once in

diffraction mode and once in imaging mode. Immediately

following the first scan, the microscope was switched to

imaging mode. The image data were required for establishing
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the classes (carbon, amorphous ice, crystalline ice, mixed) at

each scan point. No beam movement was observed for

multiple scans across each scan point as switching only

involves changing lenses below the sample plane. To prevent

significant hysteresis, the lenses were relaxed between the two

modes. Earlier experiments demonstrated high reliability in

scan points, with deviations less than 1 nm when switching

between modes. Images were captured at a magnification that

allowed all scan points to be detected on the camera. Each

image was recorded in a separate frame, creating two 40 � 40

data sets of the same scan area [Figs. 1(a), 1(b)]. To generate

the integrated image, the second data set in image mode was

combined by summation.

The virtual camera length was set to 90 cm, corresponding

to a resolution of 2.7 Å for detector positions 150 pixels

(0.825 mm) from the direct beam. Despite the direct beam

moving over the detector during scans, this camera length

allowed for the recording of 2.7 Å resolution data in all

frames. Camera frames were synchronized with the scanning

by the Nanomegas scan software, without engaging beam

blank between scan points. With an estimated 2 e� Å�2 for a

single scan point, the dose rate was approximately 200 e� Å�2.

2.2.4. Data pre-processing. In this study, a total of 17 data

sets were used, which were obtained from 17 different scan

areas. Each data set consisted of a set of 1600 diffraction

frames and a set of 1600 corresponding image frames, with

each set of frames collected in the same grid of 40 � 40 scan

positions. Of the 17 data sets, one was recorded during a

different session with very similar, but not necessarily identical

alignment parameters.

Individual frames from the data sets were gain-corrected

using flat fields and checked for completeness. The image

frames were shifted to their inferred location and summed to

get an overview of the scanned area [Fig. 1(b)]. We drew

region-of-interest (ROI) polygons to select areas labeled as

‘amorphous ice’ and ‘crystalline ice’. To account for uncer-

tainty in areas and overlapping regions where the beam could

simultaneously hit multiple area types, ‘mixed’ regions were

added on the edges of the selected ROIs. Remaining regions

were labeled as ‘carbon’ [Fig. 1(b)].

Subsequently, each individual scan point was assigned one

of the four classes described above. The diffraction data,

corresponding labels and associated metadata were stored as

MATLAB structure files.

These steps ensured the data sets were properly prepared

and labeled for subsequent analysis and classification tasks.

2.3. Pearson cross-correlation (PCC) calculation

The PCC coefficients reveal the linear correlation between

the diffraction frames of all scan positions within a data set,

with values between�1 and +1 indicating the degree of (anti-)

correlation (Knapp & Brown, 2014). All PCC coefficients

were calculated by correlating each diffraction frame with all

others from the same data set. The PCC coefficients matrix

was constructed by normalizing the covariance between the

variables of each individual scan point represented as X and Y

here. The covariance between two observations can be defined

according to

CovðX;YÞ ¼
1

N � 1

XN

i¼1

ðXi � �XÞðYi � �Y Þ;

where Xi and Yi are the ith values of the corresponding

variables, and �X and �Y the respective mean values. The

CovðX;YÞ function produces the covariance matrix C with the

variances on the diagonal which are used for the normal-

ization to obtain the PCC coefficients as

C ¼
CovðX;XÞ CovðX;YÞ

CovðY;XÞ CovðY;YÞ

� �
;

PCCðX;YÞ ¼
CovðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CovðX;XÞCovðY;YÞ
p :
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Figure 1
Data collection and processing workflow. (a) Data collection from randomly selected scan areas. (b) The resulting 1600 diffraction patterns and images
from each scan area were gain-corrected, and the integrated image (made from 1600 frame scans in image mode) was used to assign classes to the
individual diffraction frames. (c) 2D diffraction patterns were used for the convolutional neural network (CNN) and the radial intensity averages for the
support vector machine (SVM) and fully connected neural network (FCNN) training.



2.4. Radial intensity average (RIA) calculation

In the absence of protein, an isotropic diffraction signal is

expected for most diffraction frames, because the beam is

much wider than the size of the diffracting molecules of the

water and carbon regions. To reduce the dimensionality of the

data and the impact of noise in the diffraction frames, we

calculated their binned radial averages as

RIAðr; �rÞ ¼

R�r

0

R 2�

0 I½ðrþ�rÞðcos ’; sin ’Þ��’��r

�r�rð2þ�rÞ
;

where r represents the radial distance from the center

ðx0; y0Þ of each diffraction pattern, defined as r =

½ðx� x0Þ
2
þ ðy� y0Þ

2
�
1=2. �r is the width of the radial range

(typically 1 pixel). I½x; y� is the measured intensity at a given

coordinate.

Because, in its current configuration, our hardware does not

keep the central beam at a fixed position of the diffraction

frame during scanning, we refined the beam center position of

gain-corrected images prior to calculating the RIAs. The

diffraction patterns were centered on a 1032 � 1032-pixel

image. We used the Fast 2D peak finder algorithm (Natan,

2021) to find the beam center and calculated the offsets in

pixels from the set center. A mesh grid was put over the

patterns consisting of lattice points at the centers of each pixel.

To calculate the RIA, we created 516 bins with a step size of 1-

pixel length. These bins spanned from the center to the edge of

the images. The intensity values recorded within these bins

were summed and averaged, while pixels outside the image

frames were discarded. Beam centering is more computa-

tionally demanding than calculating the RIA. We are there-

fore actively working on implementing electron-optical

methods to maintain a constant beam center location

throughout the scanning process.

2.5. Training workflow

We randomly selected 15 data sets for training from the 16

data sets that were all recorded in the same session. The data

were split into 90% training and 10% validation parts to avoid

overfitting issues. The trained model was tested on the two

remaining data sets (3200 diffraction frames) that were

excluded from the training. Data set 1 was collected during the

same data collection run and data set 2 was recorded at a

different time point but with a similar beam alignment. The

performance of the classification network was assessed using

confusion matrices, where predictions were compared with

selected classes obtained from TEM images. The array

containing the initial class information and the predicted ones

was arranged on a 40 � 40 grid.

2.5.1. Fully connected neural networks. We used the RIA

as input feature vector to train a fully connected neural

network (FCNN), implemented by the MATLAB pattern

recognition framework (Morton et al., 2014) (Fig. 2). The

hiddenSizes argument was set to 30, the training function was

Conjugate Gradient with Powell/Beale Restarts, and the loss

function calculation was based on Categorical Cross-Entropy.

The FCNNs have been extensively investigated, are universal

approximators (Hornik et al., 1989) and can be very fast.
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Figure 2
Workflow of the FCNN training and model validation. (a) RIA calculations, showing six rings with their radius in pixels, overlaying a diffraction pattern;
RIAs plotted against the bin number/pixel radius. (b) Integrated image and class representation; a cut-out of the integrated image, incorporating all 1600
scan positions, is shown. The color-coded image represents the classes used for the supervised training procedure. The cross that is visible in these images
is a result of the tiling of the Medipix3 detector. (c) Supervised training and class predictions of the neural network, colored according to the legend.



However, they may not be as discriminative as more sophis-

ticated architectures that we also explored (see Section 2.5.3).

2.5.2. Support vector machines. The same RIAs that were

used for the FCNN training were imported into the support

vector machine (SVM) classifier. SVMs create a maximum-

margin hyperplane that splits different classes and maximizes

the distance to the nearest cleanly split examples (Shmilovici,

2005). We used the libsvm-based SVM implementation from

the scikit library (Pedregosa et al., 2011) and hyperparameter

tuning with RandomizedSearchCV.

2.5.3. Convolutional neural networks. The presence of

proteins in the sample induces anisotropic diffraction data,

which will affect the RIAs. To address this, we explored the

effectiveness of convolutional neural networks (CNNs) that

analyze the unaveraged, 2D diffraction frames for distin-

guishing between carbon and water regions, which may

contain proteins. CNNs are typically constructed with three

fundamental components: convolution, pooling and fully

connected layers (Cun et al., 1989). The first two types perform

feature extraction, whereas the fully connected layers map

the extracted feature vector to the final output (Yamashita et

al., 2018).

Due to movement of the position of the direct beam over

the detector during scanning, the data distribution for higher

scattering angles was not uniform. To mitigate this, we limited

the resolution to 2.7 Å, which encompasses the primary rings

of amorphous carbon and amorphous ice. These rings corre-

spond to the first d-spacing values of approximately 2–4 Å for

amorphous carbon and the water ring at 3.7 Å of amorphous

ice [Figs. 3(a), 3(b)]. Consequently, we selected a region with a

radius of 150 pixels from the diffraction patterns to capture

the relevant information. The implementation of the CNN was

carried out using the Keras library with the TensorFlow

backend (Abadi et al., 2016).

2.6. Performance metrics

We assessed our results using metrics that are common in

ML. These metrics are calculated from the confusion matrix,

which provides a comprehensive summary of how well a
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Figure 3
Schematic illustration of the data processing and CNN training: (a), (b) pre-processing of the diffraction data, (c) the architecture of the trained CNN.

Figure 4
PCC coefficient matrix. (a) PCC matrix displaying the correlation between scan points within a data set, ranging from a perfect positive correlation in
yellow to a perfect anti-correlation in blue. Entries up to the 177th position are missing in this data set. (b) A single slice of the full PCC matrix was
reshaped into a 40 � 40 grid to represent the linear relationship of the scan point at position [6; 1] (marked with a small red cross), with the rest of the
data set. (c) Integrated image of all scan points showing the amorphous ice and the holey carbon support in lighter gray surrounded by the carbon in a
darker gray tone. The large cross visible in all panels is caused by the tiling of the Medipix3 detector.



model predicts the classes in a data set. It is a square matrix,

where each row corresponds to an actual class and each

column corresponds to a predicted class. The values of the

matrix indicate how often a certain class is predicted for an

instance of an actual class. From the confusion matrix, we can

calculate the following numbers:

True positives (TP) are correctly predicted classes and are

found on the diagonal of the confusion matrix.

False positives (FP) are instances that are wrongly predicted

as belonging to a particular class. To calculate the FP for a

specific class, we sum up all the instances predicted as that

class (a column in the confusion matrix) and then subtract the

true positives for that class.

False negatives (FN) are instances that are wrongly

predicted as belonging to other classes. To calculate the FN for

a specific class, we sum up all the instances of that class (a row

in the confusion matrix) and then subtract the true positives

for that class.

From these numbers, we can calculate the following metrics

for each of the classes, and below we report their average over

all classes:

The Precision measures the proportion of true positives out

of all instances predicted as positive:

Precision ¼
TP

TPþ FP
:

The Recall measures the ability of a classification model to

identify all positive instances correctly:

Recall ¼
TP

TPþ FN
:

The Accuracy measures the overall correctness of a classi-

fication model:

Accuracy ¼
TP

TPþ FPþ FN
:

The F1 score considers both the ability to avoid false

positives (precision) and the ability to find all positive

instances (recall):

F1 ¼
2� Precision� Recall

Precisionþ Recall
:

3. Results

3.1. PCC coefficients and RIA profile

The PCC calculation resulted in a 1600 � 1600 matrix of

values between �1 and 1 (Fig. 4). By slicing and rearranging

this PCC coefficient matrix into multiple 40 � 40 matrices, the

linear correlations of individual scan points were visualized

(Fig. 4). These indicated a reasonable internal correlation

between diffraction data of solvent regions, of carbon support

regions and of crystalline ice.

The amorphous ice and carbon regions on holey carbon

grids showed diffraction patterns with diffuse rings char-

acteristic of amorphous samples, that were clearly visible in

the RIAs [Fig. 5(a)]. The RIAs therefore potentially enable

fast training times due to the reduced number of input

features (516 input parameters for each measurement, instead

of 512 � 512 pixel values).

3.2. Training results

3.2.1. Fully connected neural networks. The FCNN could

reach 89.25% accuracy and a weighted F1 score of 88.3% for

the test data set collected during the same data collection

period (Fig. 6, data set 1). Most of the misclassifications were

related to the ‘mixed’ class, corresponding to the overlap of

the amorphous ice and carbon classes around the edges of the

holes and edges around crystalline ice. The performance of the

research papers

Acta Cryst. (2023). A79, 360–368 Senik Matinyan et al. � Machine learning for classifying diffraction data 365

Figure 5
Single diffraction frame and RIAs for different classes. (a) Pixel selection for RIA calculations, overlaying a diffraction pattern of a single measurement.
(b) RIA plots with each curve colored according to the corresponding class. A section is magnified to highlight the clustering of curves depending on the
sample. (c) Same plot with the smoothened logarithm of the RIA to highlight the differences between classes. To reduce the impact of noise and outliers
in the visual representation, the data are shown as a moving average of logarithm (RIA) over 13 bins.



FCNN was sensitive to small deviations in alignment and

environmental factors, as shown by the drop in accuracy when

we used data collected in a different session (Fig. 6, data set 2).

The differentiation between the amorphous ice and carbon

was still possible to some degree. Again, most of the

misclassifications corresponded to the ‘mixed’ cases. The

network reached 78.5% accuracy and a weighted F1 score of

71.1% for this data set (Table 1).

We concluded that a relatively straightforward FCNN was

able to recognize the two main classes when trained on radial

profiles of diffraction patterns.

3.2.2. Support vector machines. For the SVM training, the

best result was achieved using the Radial Basis Function

(RBF) kernel. The SVM classifier could reach 84.6% accuracy

and a weighted F1 score of 82% for data set 1. The values were

76% and 68%, respectively, for data set 2 (Table 1). The
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Figure 6
The performance of the FCNN, SVM and CNN was tested on two data sets. Data set 1 was collected during the same data collection run as the training
data sets, while data set 2 was acquired at a different time point but with a similar beam alignment. Integrated images of scan points, selected classes,
predictions and differences (red) are shown for each approach. The final column represents the confusion matrices.



iteration through hyperparameters by RandomizedSearchCV

did not improve the results. The SVMs were also able to

generalize for a data set collected at a different time point

(Fig. 6, data set 2).

3.2.3. Convolutional neural networks. Our CNN archi-

tecture consisted of six convolutional layers followed by

maximum pooling and dropout layers [Fig. 3(c)]. We used

Adam as the first-order gradient-based optimization algorithm

and accuracy as a performance metric (Kingma & Ba, 2014).

We chose validation loss as an early stopping metric; the

training usually stopped after 100 epochs.

As in the FCNN and SVM cases, the CNNs misclassified

some of the ‘mixed’ classes, reaching an overall accuracy of

79% and 81% for data sets 1 and 2, respectively (Table 1). The

weighted F1 score was 71% and 73%, respectively.

The CNN architecture, even when using the central part of

diffraction data (up to a resolution of 2.7 Å), was able to

perform equally well for the test data set collected at different

time points (Fig. 6, data set 2). However, it was not able to

efficiently distinguish crystalline ice from other classes. A

likely explanation of the failure to identify ice crystals is that

we only included information up to the first ice ring for the

CNN and the ice crystals may not have diffracted Bragg spots

within the resolution limit used for classification by the CNN.

For the purpose of separating vitreous ice from carbon

support, the performance metrics of the CNN were highest

among other models when tested on a new data set (Table 1,

data set 2).

3.2.4. Speed and performance comparison. The same

hardware was used to assess the difference in the prediction

speeds. Our implementation of the radial average calculation

is computationally demanding and requires 97 s for 1600

diffraction frames (averaged over three trials). The pre-

processing for the CNN classification does not require RIAs

and is much faster. The FCNNs are the fastest for pre-

processed data predictions, whereas SVMs require up to 10 s.

CNNs seem more robust, as they have better prediction

metrics for the data set that was collected during a different

session (Table 1, data set 2).

4. Discussion and conclusions

Single-molecule electron diffraction is an alternative, general

method for structural studies of dynamic biomolecular

complexes and, with the introduction of modern hybrid pixel

detectors, has the potential to further boost the advancement

of the field. However, single-molecule electron diffraction uses

a narrow electron beam and stepwise scanning mode, which

requires a high frame rate to collect sufficient amounts of data,

which may stretch the data collection pipelines. To reasonably

keep up with data production rates, on-the-fly data selection

should be considered.

We demonstrate that ML approaches can efficiently and

successfully separate regions of carbon from vitreous ice on

EM grids, based on narrow, parallel beam electron diffraction

data. Both the FCNN and SVM architectures distinguish

amorphous ice from carbon on the holey EM grid with high

accuracy and can be used for the selection of positions of

interest during the data collection procedure. The FCNN is

faster due to its simplicity and has a comparable general-

ization score. We anticipate that, in the presence of protein,

the radial average of a diffraction frame is likely to retain

sufficient signal of the water or carbon region to ensure a

meaningful distinction can be made. If the beam center is fixed

and known, calculating the radial average only requires a

single pass through the data, and can be incorporated into any

data compression algorithm at very little cost. Therefore, we

propose employing these approaches as a pre-selection tool

for saving storage space by only storing data from the regions

predicted as amorphous ice.

The CNN approach distinguished the main classes using

only the small, central part of the diffraction frame. This may

hamper its ability to identify tiny ice crystals, but it never-

theless is the most robust and fastest approach for 2D

diffraction frame classification of non-crystalline patches (see

Section 3.2.3). The pre-processing is faster and further tuning

may potentially improve the prediction speed. Most of the

‘mixed’ cases were distributed among ‘amorphous ice’ and

‘carbon’ classes and we could reach a classification accuracy of

81% for the test data set 2.

Thus far the models have been solely trained using data sets

that were collected using similar electron beam alignment

settings. Tests (not shown here) indicated that the perfor-

mance of our models dropped significantly for more conver-

gent beams. To further improve performance, the

heterogeneity of the training data should be increased, by

providing data sets with varying settings. While all three tested

approaches were capable of correctly identifying amorphous

ice diffraction, the CNN approach showed better general-

ization performance in the task. The CNN classification

achieved higher accuracy when applied to data set 2, which

was acquired at a different time point and with very similar,
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Table 1
The comparison between CNN, FCNN and SVM.

The weighted average precision, recall, accuracy and F1 scores are shown for
the two test data sets. NA, not applicable.

Speed comparison FCNN SVM CNN

1a RIA calculation time
for the data set (1600
diffraction frames)

97 s 97 s NA

1b ROI selection and
dimensionality match
(1600 diffraction
frames)

NA NA 3.24 s

2 Actual prediction time 0.017 s 9.92 s 1.06 s

Performance
metrics
(weighted
average)

Data
set 1

Data
set 2

Data
set 1

Data
set 2

Data
set 1

Data
set 2

Precision 0.89 0.72 0.84 0.62 0.77 0.84
Recall 0.89 0.79 0.85 0.76 0.79 0.81
Accuracy 0.89 0.79 0.85 0.76 0.79 0.81
F1 score 0.88 0.711 0.82 0.68 0.71 0.73



but not necessarily identical beam alignment. As an ideal

classifier for this type of data must be able to deal with day-to-

day variations in microscope conditions without retraining, we

therefore consider the CNN approach using non-radially

averaged pixel data to be the most promising for future

development. Also, since diffraction data of single protein

molecules are anisotropic, using diffraction data that are not

radially averaged may be critical for separating single-mole-

cule protein diffraction data from vitreous ice, which is the aim

of our future investigations.
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Fröjdh, E., Abrahams, J. P., Andrä, M., Barten, R., Bergamaschi, A.,

Brückner, M., Chiriotti, S., Dinapoli, R., Greiffenberg, D., Hinger,
V., Lovacik, L., King, T., Kozlowski, P., Lopez-Cuenca, C., Jürgen,
M., Mezza, D., Mozzanica, A., Ruder, C., Schmitt, B., Hasanaj, S.,
Thattil, D., van Genderen, E., Vetter, S. & Zhang, J. (2022). J.
Instrum. 17, C01020.

Hornik, K., Stinchcombe, M. & White, H. (1989). Neural Netw. 2,
359–366.

Horwath, J. P., Zakharov, D. N., Mégret, R. & Stach, E. A. (2020). Npj
Comput. Mater. 6, 108.

Kingma, D. & Ba, J. L. (2014). Computer Science, 1–15.
Knapp, T. R. & Brown, J. K. (2014). Res. Nurs. Health, 37, 347–351.
Latychevskaia, T. & Abrahams, J. P. (2019). Acta Cryst. B75, 523–531.
Morton, K. D., Torrione, P., Collins, L. & Keene, S. (2014).

arXiv:1406.5565.
Natan, A. (2021). Fast 2D Peak Finder. File Exchange. MATLAB

Central.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
& Duchesnay, E. (2011). J. Mach. Learn. Res. 12, 2825–2830.

Shmilovici, A. (2005). Data Min. Knowl. Discov. Handb. pp. 257–276.
Taheri, M. L., Stach, E. A., Arslan, I., Crozier, P. A., Kabius, B. C.,

LaGrange, T., Minor, A. M., Takeda, S., Tanase, M., Wagner, J. B. &
Sharma, R. (2016). Ultramicroscopy, 170, 86–95.

Takaba, K., Maki-Yonekura, S., Inoue, S., Hasegawa, T. & Yonekura,
K. (2021). Front. Mol. Biosci. 7, 440.

Treder, K. P., Huang, C., Kim, J. S. & Kirkland, A. I. (2022).
Microscopy, 71, i100–i115.

Yamashita, R., Nishio, M., Do, R. K. G. & Togashi, K. (2018). Insights
Imaging, 9, 611.

Yonekura, K., Maki-Yonekura, S., Naitow, H., Hamaguchi, T. &
Takaba, K. (2021). Commun. Biol. 4, 1044.

Zhang, Y., Jiang, H., Ye, T. & Juhas, M. (2021). Trends Microbiol. 29,
569–572.

368 Senik Matinyan et al. � Machine learning for classifying diffraction data Acta Cryst. (2023). A79, 360–368

research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=lu5027&bbid=BB22

