A Magnetic Excitation Linking Quasi-1D Chevrel-Type Selenide and Arsenide Superconductors

Tyra Douglas¹, Songxue Chi², Keith Taddei², Jared Allred¹
¹University of Alabama, ²Oakridge National Laboratory
tdouglas@crimson.ua.edu

The quasi-one-dimensional Chevrel phases, \(A_2Mo_6Se_6 \) (\(A = \) Tl, In, K, Rb, Cs), are of interest due to their atypical electronic properties. The Tl and In analogues undergo a superconducting transition whereas the alkali metal analogues undergo metal-to-insulator transitions, neither of which is fully understood. This talk will report the results of inelastic neutron scattering on polycrystalline \(\text{In}_2\text{Mo}_6\text{Se}_6 \) (\(T_c = 2.85 \) K) and \(\text{Rb}_2\text{Mo}_6\text{Se}_6 \) (\(\text{TMIT} \sim 170\)K) which reveal a highly dispersive column of intensity present in both compounds near \(Q = 1.0 \) Å\(^{-1}\). The excitation is nearly indistinguishable from another excitation observed in the structurally related superconducting compound \(\text{K}_2\text{Cr}_3\text{As}_3 \), which has been interpreted as magnetic in origin and related to Fermi surface nesting. However, the calculated Fermi surface of \(\text{K}_2\text{Cr}_3\text{As}_3 \) differs substantially from the \(\text{A}_2\text{Mo}_6\text{Se}_6 \) compounds, and many consider them distinct classes of materials. Nevertheless, the new observation is most consistent with a magnetic origin, linking the physics of both classes.