Catena structures formed by Li(+) with the TCNQF4(-) radical anion or with dianionic, diamagnetic TCNQF4(2-): Comparison to Cu(I)(TCNQX4) compounds (X = H, F, CI)

Larry R Falvello¹, Slavomira Šterbinská¹, Milagros Tomás¹

*Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Química Inorgánica, CSIC-Universidad de Zaragoza,

falvello@unizar.es

A series of compounds with chain structures, containing $Li^{(+)}$ and $TCNQF_4$, which is either monoanionic or dianionic ($TCNQF_4 = 2,3,5,6$ -tetrafluoro-7,7,8,8-tetracyanoquinodimethane) have been prepared using a simple diffusion-based technique and have been structurally characterized. Some of the compounds also contain nitrogen donor ligands such as bipy (bipy = 2,2'-bipyridyl). The radical anion $TCNQF_4^{(-)}$ is found in the compound $Li(\mu_3-TCNQF_4)$ (bipy), which was crystallized from acetonitrile. The crystal structure features a one-dimensional ribbon in which the $TCNQF_4^{(-)}$ radical anion bridges three $Li^{(+)}$ centers, each of which also has a chelating bipy. Another one-dimensional ribbon is found in the structure of $\{[(bipy)Li]_2 (\mu_4-TCNQF_4)\}_n$ nbipy, which has $TCNQF_4$ in its dianionic, diamagnetic form. Each $TCNQF_4$ fragment bridges four $Li^{(+)}$ centers, which are blocked by terminal chelating bipy groups that complete a tetrahedral environment around the $Li^{(+)}$ center. The structure will be compared to those of two $\{[Cu(I)bipy]_2(TCNQF_4)\}_n$ systems. [1] Crystals with a 3-D polymeric structure are formed by $Li(TCNQF_4)$, which is prepared in a two-step procedure. The crystal structure is similar to that reported for the Cu(I)-containing compound $[Cu(TCNQH_2Cl_2]$, for which remarkable physical properties were reported. [2]

References

[1] New CuI₂(TCNQ^{-II}) and CuI₂(F₄TCNQ^{-II}) Coordination Polymers. Brendan F. Abrahams, Robert W. Elliott, Timothy A. [2] Hudson, Richard Robson, and Ashley L. Sutton. Cryst. Growth Des. 2015, 15, 2437–2444. DOI: 10.1021/acs.cgd.5b00220 Unprecedented Binary Semiconductors Based on TCNQ: Single-Crystal X-ray Studies and Physical Properties of Cu(TCNQX₂) X = Cl, Br. Nazario Lopez, Hanhua Zhao, Akira Ota, Andrey V. Prosvirin, Eric W. Reinheimer, Kim R. Dunbar, Adv. Mater. 2010, 22, 986-989. DOI: 10.1002/adma.200903217