Semi and self supervised approaches to space group and bravais lattice determination

W. Ratcliff1,2, S. Lolla1, Ichiro Takeuchi1,2, Aaron Kusne1,2, Haotong Liang1,2

NIST, Gaithersburg, Maryland, USA, University of Maryland, College Park, Maryland, USA
William.ratcliff@nist.gov

Keywords: Artificial Intelligence, Diffraction, Neural Network

During this talk, I will discuss our work [1] to use neural networks to automatically classify Bravais lattices and space-groups from neutron powder diffraction data. Our work classifies 14 Bravais lattices and 144 space groups. The novelty of our approach is to use semi-supervised and self-supervised learning to allow for training on data sets with unlabelled data as is common at user facilities. We achieve state of the art results with a semi-supervised approach. Our accuracy for our self-supervised training is comparable to that with a supervised approach.

Support for Satvik Lolla was provided by the Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under Agreement No. DMR-2010792.

https://doi.org/10.1107/S1600576722006069