Commensurate and incommensurate superstructures in rare earth metal chalcogenides $\text{REX}_2-\delta$

Th. Doert, H. Poddig

Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany

thomas.doert@tu-dresden.de

Keywords: superstructures, aperiodic structures, chalcogenides

The structures of the chalcogenides $\text{REX}_2-\delta$ ($\text{RE} = \text{La-Nd, Sm; Gd-Lu}; X = \text{S, Se, Te}$) of trivalent rare earth metals attracted some attention as different commensurate and incommensurate superstructures are found in a quite narrow composition range $0 \leq \delta \leq 0.2$. All structures share a common structural motif of an alternating stacking of puckered $[\text{REX}]$ and planar $[X]$ layers and are closely related to the ZrSSi structure (space group $P4/nmm$), which is regarded as their common aristotype, Figure 1 (left) [1]. For electronic reasons, the planar $[X]$ layer shows distortions from a perfect square net, as dianions X_2^{2-} are found for the non-deficient REX_2. By reducing the chalcogenide content, ordered vacancy patterns are observed within the planar layers. The different amounts of vacancies, i.e. the value of δ, drives the structures towards the formation of different commensurate and incommensurate superstructures for the $\text{REX}_2-\delta$ compounds. For each single vacancy in the chalcogen layer of the sulfides and selenides, one X_2^{2-} anion is found to maintain a charge balanced composition. In a chemical sense, this can be rationalised as a disproportionation reaction upon elimination of X. The tellurides show different ordering patterns in the planar $[\text{Te}]$ layer for the non-deficient RETe_2 compounds, but also a tendency to form larger anionic fragments for the deficient $\text{RETe}_2-\delta$ compounds, as seen for the commensurate structure of $\text{GdTe}_{1.8}$, e.g. [2].

La$\text{Te}_{1.94}$ and La$\text{Te}_{1.82}$ are two examples of different incommensurate crystal structures for $\text{RETe}_2-\delta$ compounds, e.g., driven by a different amount of vacancies in the planar $[\text{Te}]$ layer [3, 4]. Both compounds share an average tetragonal unit cell with $a \approx 4.50$ Å and $c \approx 9.17$ Å, reflecting the structure of their aristotype. The major difference of these compounds are their respective q vectors, which are compatible with tetragonal symmetry for La$\text{Te}_{1.94}$, but indicate a loss of the fourfold rotational axis for La$\text{Te}_{1.82}$, ending up in an orthorhombic superspace group. The $[\text{Te}]$ layer of La$\text{Te}_{1.94}$ is mainly composed of single vacancies, isolated Te^{2-} anions and Te_2^{2-} anions. La$\text{Te}_{1.82}$ is more Te deficient and features adjacent vacancies in addition to Te_3^{4-} anions to guarantee charge balance. The chemical bonding within different chalcogen layers is compared by the DFT-based ELI-D descriptor.

![Figure 1. Average structure of La$\text{Te}_{1.82}$ (left), Fourier section around Te2 atoms in the modulated structure of La$\text{Te}_{1.82}$ (centre), and section of the diffraction image of Gd$\text{Te}_{1.8}$ (right).](image-url)

