Structural characterisation and inhibition of Arenavirus replication complex elements: assembly, function and inhibition of embedded nucleases.

S. Hernandez1, N. Papageorgiou1, M. Spiliopoulou3, M. Ferracci1, L. Garlatti1, B. Selisko1, A. Vaitsopoulou1, T-H. V. Nguyen1, C. Mondielli1, M. Saez-Ayala1, Y. Laban1, I. Margiolaki3, B. Canard1,2, K. Alvarez1, F. Ferron1,2

1 Architecture et Fonction des Macromolécules Biologiques - CNRS - Aix-Marseille Université - UMR7257 - Viral Replicases: Structure, Mechanism, and Drug-Design, 13009, Marseille, France. 2 European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany. 3 Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, GR-26500 Patras, Greece.

Keywords: Bunyavirales, replication complex assembly, Nucleases inhibition

Arenaviruses, belongs to a family of emerging enveloped segmented and ambisens RNA viruses associated with neurological and hemorrhagic diseases in humans. Arenavirus transcription and genome replication are cytoplasmic ensured by a ribonucleoproteine replicase complex NP-L. After penetration, L protein initiates transcription to produce NP and L mRNAs[1]. The priming of transcription is the result of a cap-snatching mechanism ensured by an endonuclease domain associated to the L polymerase. As the concentration of NP in the cell increases, genome segments are replicated, to produce full-length copies (cRNA). cRNAs are now templates for transcription of GPC mRNA (from the S segment) and Z mRNA (from the L segment). The NP carries an exonuclease in charge of clearing out from the cytoplasm dsRNA triggering innate immunity response. Both nucleases have a similar two metal ion catalytic mechanism, with the particularity of transitioning ion brought by the RNA substrate. Any alteration of the remaining ion impairs greatly theses activities[2]. We present a global study aiming to characterize the assembly of the NP[3], through flexible domains[4], a step critical for vRNA packaging and the positionning of L for vRNA replication, as well as using a combined approach of biophysical screening, crystallography and in silico docking, identifying active compounds against both nucleases[5]. Crystal structures of the nucleases domain complexed with several compounds were obtained[67]. By developing specific compounds to alter both transcription and innate immunity shadowing, our strategy is to give the cell a fighting chance to clear the infection. Combining structure, enzymology, rational synthesis, hit-To-lead optimization, in cellula evaluation, and screening methods, we are presenting the results of a 2nd generation of molecules paving the way to the design of a 3rd generation increasing specificity towards Arenaviral nucleases in the context of the replication complex[8].

Figure 1. Experimental pipeline from characterisation to inhibitor.