Magnetic and structural properties of the Fe$_{5-x}$Si$_x$Ge$_x$B$_2$ system

R. Clulow1, D. Hedlund2, A. Vishina3, P. Svedlindh2, M. Sahlberg1

1Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden,
2Department of Materials Sciences and Engineering, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden, 3Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden

Keywords: Permanent magnets, X-ray diffraction, Transition metal alloys and compounds

Materials with magnetic properties are already known to have numerous applications including perhaps most notably, energy conversion. Many of the currently used materials utilise rare earth elements which pose some concerns for both their sustainability and cost. Rare earth free magnets could provide a solution to these issues, but further research is needed to develop and gain a full understanding of these materials. One example of a rare earth free magnetic material is Fe$_5$SiB$_2$ which adopts a tetragonal I$4/mcm$ space group (Figure 1) and is ferromagnetic below 760 K. The compound has a saturation magnetisation M_S larger than 1 MA/m, a magnetocrystalline anisotropy (MAE) of 0.30 MJ/m3 at 300 K and undergoes a spin reorientation at 172 K.[1] Whilst the compound has the high Curie temperature T_C and saturation magnetisation M_S required, the magnetocrystalline anisotropy (MAE) is too low for most applications. Research has aimed to increase the MAE whilst maintaining the high T_C and M_S required. There are several existing studies on the effects of P, S, and Co doping with varying results, whilst Fe$_{5-x}$Si$_{0.75}$Ge$_{0.25}$B$_2$ has been previously reported, the Fe$_{5-x}$Si$_x$Ge$_x$B$_2$ system has yet to be fully explored.[2,3] In this study, the Fe$_{5-x}$Si$_x$Ge$_x$B$_2$ system is explored and the structure and properties of the first 4 compounds where $X = 0.05, 0.10, 0.15$ and 0.20 have been investigated in detail using a combination of powder X-ray diffraction and magnetometry (Figure 1).[4]

![Figure 1](image-url)
Figure 1. a) crystal structure of Fe$_{5-x}$Si$_x$Ge$_x$B$_2$ b) unit cell parameters of Fe$_{5-x}$Si$_x$Ge$_x$B$_2$ c) magnetisation versus Ge content of Fe$_{5-x}$Si$_x$Ge$_x$B$_2$.

The authors acknowledge the support of the Swedish Foundation for Strategic Research (SSF, contract EM-16-0039) and the Swedish Research Council (2019-00207).