LInBO$_3$-type Polar Antiferromagnet InVO$_3$ Synthesized under High-Pressure Conditions

Zhenhong Tan1,3,4,*, Joey A. Lussier2, Takumi Yamada1, Yuanhui Xu1,5, Takashi Saito1, Masato Goto1, Yoshihisa Kosugi1, Dmitry Vrublevskiy2, Yoshihiko Kanemitsu1, Mario Bieringer2, Yuichi Shimakawa1,*

1Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan) 2Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada) 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (P. R. China) 4Spallation Neutron Source Science Center, Dongguan 523803 (P. R. China) 5Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (P. R. China) *Email: tanzh@ihep.ac.cn, shimak@scl.kyoto-u.ac.jp

Keywords: LInBO$_3$-type structure, multiferroic, high-pressure high-temperature synthesis, solid-state chemistry

ABO$_3$-type oxides exhibit various structures with different combinations of A- and B-site ions. Their structures can be empirically predicted by Goldschmidt’s tolerance factor t, $t = (r_A + r_O) / \sqrt{2(r_B + r_O)}$, where r_A, r_B, and r_O are the radii of the A, B, and oxygen ions, respectively [1]. As shown in Figure 1, the Ln$^{3+}$V$^{3+}$O$_3$ (Ln: lanthanides) crystallizes in the GdFeO$_3$-type distorted perovskite structure with a tolerance factor, t, from 0.786 to 0.843 [2-4]. While ScVO$_3$ ($t = 0.744$) crystallizes in a bixbyite-type structure, which is described as (Sc$_{0.5}$V$_{0.5}$)$_2$O$_3$ with disordered Sc$^{3+}$ and V$^{3+}$ [5]. Interestingly, the bixbyite-type ScVO$_3$ undergoes cation ordering to the GdFeO$_3$-type perovskite phase by applying high-pressure and high-temperature conditions [6]. InVO$_3$ was also reported to crystallize in a bixbyite-type structure upon reduction of InVO$_4$ [7]. Although the ionic radius of In$^{3+}$ (0.80 Å) is between that of Lu$^{3+}$ and Sc$^{3+}$, the GdFeO$_3$-type perovskite phase has not been reported yet.

In this study, we applied high-pressure and high-temperature technique to synthesize the perovskite phase for InVO$_3$. Instead, we have found that the polar LInBO$_3$-type structure is stabilized under 9 GPa and 1373 K. Figure 2 shows the synchrotron X-ray diffraction (SXRD) pattern of newly obtained InVO$_3$. LInBO$_3$-type structure with space group R3c can considerably fit the SXRD pattern, giving the lattice parameters $a = 5.29139(3)$ Å and $c = 13.98160(7)$ Å [6]. The crystal structure, polar and magnetic properties will be discussed in the conference.

References