Phase transition hysteresis at the antiferroelectric-ferroelectric boundary in PZT

Z. An, S. Xie, A. M. Glazer, M. Paściak and N. Zhang

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, England Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic jeyee2014@stu.xjtu.edu.cn

Keywords: antiferroelectric, phase transition, diffuse scattering

PbZr$_{1-x}$Ti$_x$O$_3$ exhibits an antiferroelectric (AFE)-ferroelectric (FE) phase boundary at the composition $x \sim 0.06$. At room temperature, compositions with $x < 0.06$ possess AFE $Pbam$ structure, and compositions with $x > 0.06$ possess FE $R3c$ structure. Upon heating, both phases transit into an intermediate (IM) state [1, 2]. Around this boundary, there are several questions in need to be answered, such as the stabilizations of different phases with a small amount of compositional difference, the sequence of phase transitions, crystal structures, and potential applications [3].

In this work, we have investigated PbZr$_{1-x}$Ti$_x$O$_3$ ($0.04 \leq x \leq 0.07$) single crystals and ceramics to reveal their local and average structures and the process of transformation with temperature. Optical experiments and x-ray and neutron scattering results show that, near the phase boundary, the AFE and FE structures coexist with a continuously changing ratio as a function of x. The complete phase diagram has been established. The AFE domains tend to be of smaller sizes with increasing x and finally become a local-structural component upon entering the FE side. A peculiar transition path $Pbam \rightarrow$ IM state \rightarrow $R3c \rightarrow Pbam$ has been discovered near the phase boundary. It is confirmed that $Pbam$ and $R3c$ structures maintain a subtle balance at the phase boundary, which may be perturbed by a slight change in the concentration or other external stimuli [4]. These findings provide new insights in understanding the antiferroelectric-ferroelectric competition and, hence, in designing new materials for energy storage and conversion.

![Figure 1](image-url)

Figure 1. X-ray diffuse scattering patterns on the $(h00)_{pc}$ plane during the phase transition of a single crystal with $x \sim 0.05$. The squares indicate typical quarter reflections, and the triangle indicates a typical M point.