Refinement of anomalous dispersion parameters – more than model improvement

Michael Bodensteiner¹, Florian Meurer¹, Oleg V. Dolomanov², Christoph Hennig³,⁴, Norbert Peyerimhoff⁵, Florian Kleemiss¹, Horst Puschmann²,⁵

¹University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; ²OlexSys Ltd, Chemistry Department, Durham University, DH1 3LE Durham, United Kingdom; ³The Rossendorf Beamline (BM20), European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France; ⁴Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01314 Dresden, Germany; ⁵Department of Mathematical Sciences, Durham University, DH1 3LE Durham, United Kingdom

michael.bodensteiner@ur.de

Keywords: Anomalous dispersion, X-ray absorption, resonant scattering

Correcting for anomalous dispersion is part of any model during an X-ray crystal structure determination. The procedure takes the inelastic scattering in the diffraction experiment into account.[1] This X-ray absorption effect is specific to each chemical compound and is particularly sensitive to radiation energies in the region of the absorption edges of the elements in the compound. Therefore, the widely used tabulated values for these corrections can only be approximations as they are based on calculations for isolated atoms.[2-4] Features of the unique spatial and electronic environment that are directly related to the anomalous dispersion are ignored, although these can be spectroscopically observed. This significantly affects the fit between the crystallographic model and the measured intensities when the excitation wavelength in an X-ray diffraction experiment is close to an element’s absorption edge.

The presentation will report on synchrotron multi-wavelength single-crystal X-ray diffraction as well as X-ray absorption spectroscopy experiments which we performed on the molecular compound Mo(CO)₆ at energies around the molybdenum K edge (20,000 eV). The dispersive (f’) and absorptive (f’’) terms of the anomalous dispersion can be refined as independent parameters in the full-matrix least-squares refinement.[5] This procedure has now been implemented as a new feature in the well-established Olex2 software suite, both for Hirshfeld and independent atom refinement.[7] These refined parameters are in good agreement with the independently recorded X-ray absorption spectrum and the resulting crystallographic models show significant improvement compared to those employing tabulated values.

We also found strong deviations from tabulated values even far from absorption edges that would also require very different absorption coefficients. Furthermore, the refined anomalous dispersion parameters follow the oxidation states of the corresponding metal atoms already in the structures obtained from home lab diffractometer data (Fig. 1).

Figure 1. Refined f’ and f’’ parameters for Cobalt in different compounds obtained from Cu Kα radiation.[8]


FK acknowledges funding by the DFG in the Walter Benjamin Scheme KL 3500/1-1.