Supramolecular N–H⋯O interactions in a new hybrid organic-inorganic decavanadate synthon

Joseph P. Haller, Aungkana Chatkon, Kenneth J. Haller

Home School, PO Box 43, Chom Surang, Nakhon Ratchasima 30001 Thailand

School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand, Chemistry, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000 Thailand

JPH.thus@gmail.com

Keywords: supramolecular structure, decavanadate, metformin, guanylurea, synthon

As part of our studies incorporating metformin with other compounds used for diabetes therapy [1,2], we have synthesized a salt of decavanadate, $V_{10}O_{28}^{6-}$, containing mixed organic cations by heating metformin and sodium metavanadate in aqueous solution at pH 4 and 60 °C in the presence of picolinic acid, followed by keeping the solution at RT overnight to give an orange crystal. The product was characterized by spectroscopic and single crystal X-ray diffraction analysis [1]. Guanylurea cation, HGU$^+$, forms from metformin in the synthesis under similar conditions to those in a previous report [2]. As often observed, the $V_{10}O_{28}^{6-}$ anion lies on an inversion center [1,2,3]. The charge of the six-minus decavanadate anion is balanced by two diprotonated metforminium(2+) dications, H_2Met^{2+} and a disorder region containing single HGU$^+$ and H_2O^{+} cations located about an inversion center. The salt exhibits a complex 3-D charge-assisted hydrogen bonding network involving extended chains of the eight waters of hydration, the two metforminium(2+) dications, and the $V_{10}O_{28}^{6-}$ anion through extensive $O\cdot\cdot\cdotH\cdot\cdot\cdotO$, N–H⋯O, and C–H⋯O intra- and inter-molecular interactions. The same 3-D network has also been found previously [4].

The HGU$^+$ cations, which do not appear to be structure determining, are located in cavities in the network, each connected to a single decavanadate anion through a highly concerted eight N–H⋯O interaction (Fig. 1). The HGU$^+$ cations are strongly connected to only one of the $V_{10}O_{28}^{6-}$ anions surrounding each of them and weakly connected to the inversion related $V_{10}O_{28}^{6-}$ anion (only three N–H⋯O interactions). The excess cavity space may contribute to the massive disordering of the HGU$^+$ cation and the ease of removal from the lattice with the waters (TGA results). This strong highly concerted interaction between the HGU$^+$ cation and the $V_{10}O_{28}^{6-}$ anion suggest that this interaction is a synthon, also existing in solution, may contribute to the catalytic degradation of metformin to guanylurea [1,2]. The disorder and the supramolecular environment of the multiple cations, the decavanadate anion, and the water of hydration chains will be discussed. A 100 K structure has been determined [5] and will be compared to the 296 K structure.

Figure 1. (left) ORTEP perspective drawing showing the HGU$^+:V_{10}O_{28}^{6-}$ synthon (50% probability ellipsoids). (right) ORTEP perspective drawing showing the four-position disordered HGU$^+$ / two-position disordered H_2O^{+} (10% probability ellipsoids). The solid-bond positions are rotated relative to each other 26.4°, while the open-bond positions are inversion related to the solid-bond positions. H atoms in both drawings are represented as spheres with arbitrary radius for clarity.

