Microsymposium

GPU-accelerated solvers for the ptychographic reconstruction framework PtyPy

Benedikt J. Daurer1 and Bjoern Enders2

1 Diamond Light Source, Harwell Campus, Chilton, Oxfordshire, OX11 0DE, UK,
2 NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

\textit{benedikt.daurer@diamond.ac.uk}

\textbf{Keywords:} Ptychography, high-performance computing, PtyPy

X-ray ptychography has been established as a successful high-resolution imaging technique at synchrotrons and FELs \cite{1}. In recent year, the Diamond Light Source (DLS) has invested significant resources into the development of fast GPU-accelerated reconstruction code for ptychography. Here, we present a comprehensive list of new features added to the already versatile computational framework PtyPy \cite{2} including GPU-accelerated code for the difference map (DM) \cite{3}, maximum likelihood (ML) \cite{4} and other solvers, all with mixed-state \cite{5} capabilities. We demonstrate the achieved speed up in reconstruction time on a large test dataset with 200 000 diffraction patterns, reconstructed with and without position correction using PtyPy (Figure 1). We will further present live streaming capabilities in PtyPy and a new web-based visualisation interface.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Nano-fabricated test sample from the I14 beamline (DLS) with 200 000 diffraction patterns of size 128x128 pixels reconstructed with the GPU-accelerated PtyPy software using 300 iterations of the DM algorithm (a) without any corrections and (b) with position refinement. Normalised reconstruction times (nanoseconds / iteration / frame / pixel) [6] were achieved at 0.11 (a) and 0.12 (b) respectively.}
\end{figure}

\begin{thebibliography}{9}
\bibitem{1} F. Pfeiffer, Nat. Phot. 12, 9–17 (2018)
\bibitem{3} P.Thibault, M.Dierolf et al., Ultramicroscopy 109, 4 (2009)
\bibitem{4} P.Thibault and M.Guizar-Sicairos, New J. of Phys. 14, 6 (2012)
\bibitem{5} P.Thibault and A.Menzel, Nature 494, 68 (2013)
\end{thebibliography}

\textit{The authors would like to thank Aaron Parsons and Joerg Lotze for help with the software development of the PtyPy software. We would further like to thank Miguel Gomez Gonzalez for collecting the ptychographic test dataset at the I14 beamline.}