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Monoclinic ferroelectric phases are prevalent in various functional materials,

most notably mixed-ion perovskite oxides. These phases can manifest as regu-

larly ordered long-range crystallographic structures or as macroscopic averages

of the self-assembled tetragonal/rhombohedral nanodomains. The structural

and physical properties of monoclinic ferroelectric phases play a pivotal role

when exploring the interplay between ferroelectricity, ferroelasticity, giant

piezoelectricity and multiferroicity in crystals, ceramics and epitaxial thin films.

However, the complex nature of this subject presents challenges, particularly in

deciphering the microstructures of monoclinic domains. In Paper I [Biran &

Gorfman (2024). Acta Cryst. A80, 112–128] the geometrical principles governing

the connection of domain microstructures formed by pairing MAB type mono-

clinic domains were elucidated. Specifically, a catalog was established of

‘permissible domain walls’, where ‘permissible’, as originally introduced by

Fousek & Janovec [J. Appl. Phys. (1969), 40, 135–142], denotes a mismatch-free

connection between two monoclinic domains along the corresponding domain

wall. The present article continues the prior work by elaborating on the form-

alisms of permissible domain walls to describe domain microstructures formed

by pairing the MC type monoclinic domains. Similarly to Paper I, 84 permissible

domain walls are presented for MC type domains. Each permissible domain wall

is characterized by Miller indices, the transformation matrix between the crys-

tallographic basis vectors of the domains and, crucially, the expected separation

of Bragg peaks diffracted from the matched pair of domains. All these para-

meters are provided in an analytical form for easy and intuitive interpretation of

the results. Additionally, 2D illustrations are provided for selected instances of

permissible domain walls. The findings can prove valuable for various domain-

related calculations, investigations involving X-ray diffraction for domain

analysis and the description of domain-related physical properties.

1. Introduction

The orientation and properties of permissible domain walls

(PDWs) connecting domains of monoclinic (MA/MB)

symmetry were thoroughly discussed in our previous paper,

denoted as Paper I (Biran & Gorfman, 2024). In addition to

motivation for the exploration of monoclinic ferroelectric

phases, we systematically derived the catalog of 84 PDWs,

which included their corresponding Miller indices, the orien-

tation relationship between crystallographic basis vectors and

the separation between Bragg peaks diffracted from domains,

connected along specific PDWs. Notably, we employed

reasonable approximations to obtain analytical expressions

for these quantities. We identified 48 PDWs of W-type and 36

PDWs of S-type, signifying whether their Miller indices are

independent or dependent on the free lattice parameters.

Moreover, we derived the specific combination of pseudocubic

lattice parameters governing the orientation of the S-type

https://doi.org/10.1107/S2053273324002419
https://journals.iucr.org/a
https://scripts.iucr.org/cgi-bin/full_search?words=ferroelastic%20domains&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=monoclinic%20symmetry&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=monoclinic%20symmetry&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:gorfman@tauex.tau.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273324002419&domain=pdf&date_stamp=2024-04-29


domain walls as well as demonstrated how the change of a

lattice parameter causes rotation of the domain wall.

According to Fu & Cohen (2000), Vanderbilt & Cohen

(2001), Noheda et al. (1999, 2000), monoclinic ferroelectric

phases (MFEP) can be categorized into MA/MB or MC types.

These phases are distinguished by the permissible crystal-

lographic direction of spontaneous polarization, if present,

and the set of independent pseudocubic lattice parameters.

Both types of MFEP are prevalent in ferroelectric perovskites

and are frequently employed to describe the fine details of

their crystallographic structures (see e.g. Guo et al., 2003;

Phelan et al., 2015; Wang et al., 2016; Gu et al., 2014; Zhang et

al., 2011). Additionally, such phases are regularly reported in

epitaxial thin films of ferroelectrics (Luo et al., 2017; Bin

Anooz et al., 2022; de Oliveira Guimarães et al., 2022; Wang et

al., 2022; Gaal et al., 2023).

Paper I focused on MFEP of MA/MB type only. The current

article extends the same formalism to encompass monoclinic

phases of the MC type. Because the framework of this paper

aligns closely with that of Paper I, most of the mathematical

derivations have been provided in the supporting information.

For a comprehensive list of notations, please refer to the

corresponding section of the paper Gorfman et al. (2022) and

Appendix A of Paper I.

2. Monoclinic ferroelectric phases: important defini-

tions

2.1. The definition of the MC monoclinic phase

The crystallographic structures of the MC MFEP belong to

the space-group types Pm, Pc. These structures are obtained

through symmetry-lowering phase transitions from those

described by the tetragonal (T) space-group types P4mm,

P4bm. The ‘monoclinic’ mirror (m) /glide (c) plane aligns

parallel to two edges of the pseudocubic unit cell. The space-

group types Pm, Pc allow for the rotation of the spontaneous

polarization direction (SPD) within this mirror plane. Addi-

tionally, these space groups permit any distortions of the unit

cell that maintain the mirror plane. Fig. 1(a) provides a visual

representation of both the distortion of the pseudocubic unit

cell and possible rotation of the SPD.

2.1.1. The directions of spontaneous polarization. The

emergence of the MC phase from the T phase prompts us to

define the SPD through the slight rotation (by a small angle �)

from one unit-cell edge such as [001] towards another such as

[100]. This definition gives rise to distinct orientational

variants of the monoclinic domains, denoted as Mnm, where

the first index n (n = 1–3) designates the SPD Tn in the ‘parent’

tetragonal domain with T1 = [100], T2 = [010], T3 = [001]. The

second index m lists four options of monoclinic distortion |m| =

1–3 such that |m| 6¼ n. For instance, the monoclinic domain M12

has its SPD rotated from [100] towards [010], whereas M12

features rotation from [100] towards 010
� �

. Fig. 1(b) repre-

sents the stereographic projection, illustrating the potential

SPDs in all 12 monoclinic domains.

In the following, we express the SPD relative to the axes of

the Cartesian coordinate system, which are closely aligned

with the pseudocubic basis vectors. For instance, in the case of

the M31 domain we obtain

P½ �31 ¼ ½x01�: ð1Þ

Herein, we introduce the notation

x ¼ tan � ’ �þOð�2Þ: ð2Þ

2.1.2. Pseudocubic lattice parameters. Fig. 1(a) shows the

MC distortion of the pseudocubic unit cell. The corresponding

pseudocubic lattice parameters ai, �i (i = 1–3) are defined in

terms of four independent variables: a, b, c, �. For instance, in

the case of the M31 domain, we have a1 ¼ a, a2 ¼ b, a3 ¼ c,

�1 ¼ �3 = �=2, �2 ¼ �. The matrix of dot products corre-

sponding to these lattice parameters is

G½ �31 ¼

a2 0 ac cos �

0 b2 0

ac cos � 0 c2

2

4

3

5 ¼ b2ð I½ � þ G0½ �31Þ: ð3Þ

Here, [I] is the unitary matrix and

G0½ �31 ¼

A 0 D

0 0 0

D 0 C

2

4

3

5: ð4Þ

Assuming that the monoclinic distortions are small, i.e.

keeping the first power of ½ða=bÞ � 1�, �� ¼ 90 � �,

½ðc=bÞ � 1�, we can write

A ¼
a2

b2
� 1 ’ 2

a

b
� 1

� �

C ¼
c2

b2
� 1 ’ 2

c

b
� 1

� �

D ¼
ac

b2
cos � ’ ��:

ð5Þ
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Figure 1
Schematic illustration of the MC monoclinic domains. (a) The distortion
of the unit cell and the rotation of the SPD. (b) The [111]-viewed
stereographic projection, showing the SPDs for domains of tetragonal
(red), rhombohedral (green) and monoclinic MC (blue) symmetry. The
tetragonal domains (1), (2), (3) correspond to the [100], [010] and [001]
SPDs, respectively. Rhombohedral domains (1), (2), (3) and (4) corre-
spond to the [111], ½111�, ½111� and ½111� SPDs, respectively. These
directions within the 12 monoclinic domains are further explained in
Table 1.



The resulting monoclinic crystal lattice is invariant with

respect to NM = 4 symmetry operations of the holohedry point

group 2=m. The original cubic crystal lattice is invariant with

respect to NC = 48 operations of the holohedry point group

m3m. Given that the monoclinic distortion can originate from

any of these 48 equivalent variants, there are a total of

NMD ¼ NC=NM ¼ 12 monoclinic domain variants. These

domains are listed in Table 1, which includes domain identi-

fiers, Mnm, the [G0] metric tensors, the corresponding SPD as

well as the lattice parameters a1, a2, a3, �1, �2, �3.

2.2. Domain pairs

Here we introduce different types of domain pairs, denoted

as ‘T-sibling-planar’ (TSBP), ‘T-sibling-crossed’ (TSBC), ‘T-

planar-1’ (TP1), ‘T-planar-2’ (TP2), ‘T-semi-planar’ (TSP), ‘T-

semi-crossed’ (TSC) and ‘T-crossed’ (TC). The angles between

the SPDs within each pair can be calculated using equation (2)

and the third column of Table 1. A comprehensive summary of

information pertaining to the domain pair types can be found

in Table 2 (see Figs. 2–8).

3. The orientation of PDWs between different pairs of

domains

The key steps for determining the orientation of the PDWs

between two arbitrary domains (Table 1) have already been

elucidated in the corresponding section of Paper I. These

steps involve calculating the difference [G0]n � [G0]m and

evaluating their respective eigenvalues and eigenvectors. As

was done in Paper I, we present the detailed derivation for

representatives of each domain pair type. However, for the

sake of brevity, most technical details are provided in the

supporting information.

3.1. PDWs connecting domain pairs of the type T-sibling-

planar (TSBP)

Supporting information section S1.1 demonstrates the

derivation of PDW orientation for the representative TSBP

domain pair M12M12. It reveals that this pair of domains can

be connected via two PDWs, each normal to the directions

TSBP
1;2ð Þ

i :

½TSBPð1Þ� ¼

1

0

0

0

@

1

A ½TSBP 2ð Þ� ¼

0

1

0

0

@

1

A: ð6Þ

As in Paper I, the components of these vectors have the

meaning of the Miller indices of the PDW plane. The Miller

indices of both PDWs are independent of the lattice para-
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Table 1
Definition of the 12 monoclinic (MC type) domains.

The first column contains the domain identifier as depicted in Fig. 1(b). The
second column presents the twinning matrix [the definition of this matrix is

explained by Gorfman et al. (2022) and also in the Appendix of Paper 1]. The
third column provides the SPD for each domain, referenced to Cartesian axes
of the parent cubic phase. The fourth column presents the pseudocubic lattice
parameters expressed in terms of free parameters a, b, c, �. The notation
�� ¼ � � � is used for brevity. The last column features the reduced matrix of
dot products as defined by G0½ �mn = ð G½ �mn=b2Þ � ½I�.

Domain
name

Twinning
matrix [T] [P]mn

Pseudocubic
Lp [G0]mn

M12

0 1 0

0 0 1

1 0 0

2

4

3

5 [1x0] c a b �
2
�
2
�

C D 0

D A 0

0 0 0

2

4

3

5

M13

0 0 1

0 1 0

1 0 0

2

4

3

5 [10x] c b a �
2
� �

2

C 0 D

0 0 0

D 0 A

2

4

3

5

M12

0 1 0

0 0 1

1 0 0

2

4

3

5 ½1x0� c a b �
2
�
2

��

C D 0

D A 0

0 0 0

2

4

3

5

M13

0 0 1

0 1 0

1 0 0

2

4

3

5 ½10x� c b a �
2

�� �
2

C 0 D

0 0 0

D 0 A

2

4

3

5

M21

1 0 0

0 0 1

0 1 0

2

4

3

5 [x10] a c b �
2
�
2
�

A D 0

D C 0

0 0 0

2

4

3

5

M23

0 0 1

1 0 0

0 1 0

2

4

3

5 [01x] b c a � �
2
�
2

0 0 0

0 C D

0 D A

2

4

3

5

M21

1 0 0

0 0 1

0 1 0

2

4

3

5 ½x10� a c b �
2
�
2

��

A D 0

D C 0

0 0 0

2

4

3

5

M23

0 0 1

1 0 0

0 1 0

2

4

3

5 ½01x� b c a �� �
2
�
2

0 0 0

0 C D

0 D A

2

4

3

5

M31

1 0 0

0 1 0

0 0 1

2

4

3

5 [x01] a b c �
2
� �

2

A 0 D

0 0 0

D 0 C

2

4

3

5

M32

0 1 0

1 0 0

0 0 1

2

4

3

5 [0x1] b a c � �
2
�
2

0 0 0

0 A D

0 D C

2

4

3

5

M31

1 0 0

0 1 0

0 0 1

2

4

3

5 ½x01� a b c �
2

�� �
2

A 0 D

0 0 0

D 0 C

2

4

3

5

M32

0 1 0

1 0 0

0 0 1

2

4

3

5 ½0x1� b a c �� �
2
�
2

0 0 0

0 A D

0 D C

2

4

3

5
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Figure 2
Schematic illustration of the ‘T-sibling-planar’ type of MC monoclinic
domain pairs. The term ‘T-sibling’ refers to the common T domain parent.
The figure includes: (a) [111]-viewed stereographic projection, depicting
SPDs within the 12 monoclinic domains. (b) [110]-viewed stereographic
projection with the focus on the T-sibling pair types, originating from the
tetragonal T1 and T2 domains.



meters. According to Fousek & Janovec (1969) these are W-

walls.

3.2. PDWs connecting domain pairs of the type T-sibling-

crossed (TSBC)

Supporting information section S1.2 demonstrates the

derivation of PDW orientation for the representative TSBC

domain pair M12M13. It shows that this pair of domains may be

connected along PDWs normal to the vectors TSBC
1;2ð Þ

i :

½TSBCð1Þ� ¼

0

1

1

0

@

1

A ½TSBC 2ð Þ� ¼

2

u

u

0

@

1

A: ð7Þ

The wall, normal to [TSBC(1)], can be referred to as a W-

wall. In contrast, the Miller indices of an S-wall [TSBC(2)]

depend on the monoclinic distortion parameter u, as defined

by

u ¼
2

��

a

b
� 1

� �
: ð8Þ
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Table 2
Definitions of monoclinic MC domain pair types.

The first and second columns provide the full and abbreviated names of the domain pairs. The third column presents the concise definition of each pair. The fourth
column specifies the angle � between SPDs as a function of � (defined in Fig. 1). The fifth column indicates the number of corresponding domain pairs, while the

last column references the corresponding figure.

Domain pair type
full name Short name Formal definition �; �� N pairs Fig.

T-sibling-planar TSBP MnkMnk 2� 6 Fig. 2

T-sibling-crossed TSBC MnkMnl, |k| 6¼ |l|
ffiffiffi
2
p
� 12 Fig. 3

T-planar-1 TP1 MnkMml |k| = m, |l| = n, kl > 0 �
2
� 2� 6 Fig. 4

T-planar-2 TP2 MnkMml |k| = m, |l| = n, kl < 0 �
2

6 Fig. 5

T-semi-planar TSP MnkMmk, n 6¼ m �
2
þOð�2Þ 6 Fig. 6

T-semi-crossed TSC MnkMmk; n 6¼ m �
2
þOð�2Þ 6 Fig. 7

T-crossed TC MnkMml n 6¼ m, |k| 6¼ |l|, �
2
� �þOð�3Þ 24 Fig. 8
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Figure 3
The same as Fig. 2 but for the case of MC monoclinic domain pairs of the
type ‘T-sibling-crossed’.
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Figure 4
The same as Fig. 2 but for the case of TP1 (T-planar-1) type of MC

monoclinic domain pairs. The graphically overlapping connections (e.g.
M12M21 and M12M21) are drawn in different colors and line widths.
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Figure 5
The same as Fig. 4 but for the case of domain pairs of the type TP2 (T-
planar-2). As in Fig. 4, we used different colors and widths for graphically
overlapping connections like M13M31 and M13M31.
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Figure 6
The same as Fig. 2 but for the case of MC monoclinic domain pairs of the
TSP (T-semi-planar) type.



It is worth noting that, while both the numerator and

denominator in equation (8) involve small monoclinic distor-

tions, their ratio is generally not small. Specifically, u is

strongly dependent on ða=bÞ � 1 and ��. Remarkably, the

orientation of this domain wall remains independent of the

monoclinic lattice parameter c. Table 3 highlights cases in

which the Miller indices of the S-wall are rational numbers.

3.3. PDWs connecting domain pairs of the type T-planar-1

(TP1)

Supporting information section S1.3 demonstrates the

derivation of PDW orientation between the representative

TP1 pair of domains M12M21. It reveals the existence of two

W-walls normal to the vectors TP1
1;2ð Þ

i :

½TP1 1ð Þ� ¼

1

1

0

0

@

1

A ½TP1 2ð Þ� ¼

1

1

0

0

@

1

A: ð9Þ

3.4. PDWs connecting domain pairs of the type T-planar-2

(TP2)

Supporting information section S1.4 demonstrates some-

what more intricate derivation of the PDW orientation

between the representative TP2 types of domain pairs M12 and

M21. The analysis reveals the existence of two PDWs, each

normal to the vectors TP2
1;2ð Þ

i :

TP2 1ð Þ
� �

¼

g

1

0

0

@

1

A TP2 2ð Þ
� �

¼

1

g

0

0

@

1

A: ð10Þ

Here we introduced the notation

g ¼ sþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

ð11Þ

and

s ¼
a

a � c
��: ð12Þ

Both PDWs are S-walls. Their orientation appears to be

significantly influenced by the lattice parameters c, a and ��

but independent of b. Table 4 showcases two special/favorable

cases in which these walls are perpendicular to the directions

with rational Miller indices.

3.5. PDWs connecting domain pairs of the type T-semi-

planar (TSP)

Supporting information section S1.5 presents the derivation

of PDW orientation for the representative TSP type of

domains M31M21. As a result, two PDWs normal to the vectors

TSP
1;2ð Þ

i are identified:

TSPð1Þ
� �

¼

0

1

1

0

@

1

A TSPð2Þ
� �

¼

2

t

t

0

@

1

A: ð13Þ

In this context, the following notation is employed:

t ¼
2

��

c

b
� 1

� �
: ð14Þ

research papers

Acta Cryst. (2024). A80, 293–304 Biran and Gorfman � Permissible domain walls in monoclinic ferroelectrics. Part II 297

Table 4
Special cases of monoclinic distortion, leading to S-walls with rational
Miller indices separating TP2 domain pairs.

The description of the columns is the same as for Table 3, just the third column
contains the eigenvalue �3TP2 of the matrix G0½ �21 � G0½ �12.

Lattice
parameters s �3TP2

[TP2(1)]-wall
orientation

[TP2(2)]-wall
orientation

�� = 0 0 2½ðc � aÞ=b� (110) ð110Þ
c = a 1 � 2ða=bÞ�� (100) (010)
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Figure 7
The same as Fig. 2 but for the case of MC monoclinic domain pairs of the
TSC (T-semi-crossed) type.
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Figure 8
The same as Fig. 2 but for the case of MC monoclinic domain pairs of the
TC (T-crossed) type.

Table 3
Special cases of MC monoclinic distortion, leading to S-walls with rational
Miller indices for TSBC domain pairs.

Column 1: relevant condition for the lattice parameters. Column 2: corre-
sponding value of u ¼ ð2=��Þ½ða=bÞ � 1�. Column 3: eigenvalue �3TSBC of the
matrix [G0]12 � [G0]13. The case �3TSBC = 0 indicates complete lattice overlap

between domains. Column 4: Miller indices of the DW.

Lattice parameters u �3TSBC

S-wall
orientation

a = b 0
ffiffiffi
2
p

�� (100)

�� = 0 1 2½ða=bÞ � 1� (011)

�� ¼ ½ða=bÞ � 1� 2
ffiffiffi
6
p

�� (111)



Table 5 lists special cases where the S-wall, normal to [TSP(2)],

exhibits rational Miller indices. Notably, the wall’s orientation

generally remains independent of the lattice parameter a.

3.6. PDWs connecting domain pairs of the type T-semi-

crossed (TSC)

Supporting information section S1.6 provides the derivation

of PDW orientation for the representative pair of TSP-type

M31M21. The analysis reveals that this pair may connect via

two PDWs, normal to the vectors TSC
1;2ð Þ

i :

TSCð1Þ
� �

¼

2

t

t

0

@

1

A TSCð2Þ
� �

¼

0

1

1

0

@

1

A: ð15Þ

Similar to some cases discussed above, both W- and S-type

domain walls (DWs) are present here. Favorable cases in

which the [TSC(1)] S-wall exhibits rational Miller indices are

contained in Table 5.

3.7. The absence of PDWs connecting domain pairs of the

type T-crossed (TC)

Supporting information section S1.7 discusses the fact that

generally no PDWs connecting domain pairs of the type TC

exist.

4. The transformation matrices and the separation

between Bragg peaks

Supporting information section S2 provides the derivation of

the ‘Delta’ transformation matrices between the pseudocubic

basis vectors of two domains m and n. These matrices [�S] are

defined as follows:

a1n a2n a3n

� �
¼ a1m a2m a3m

� �
ð I½ � þ ½�S�Þ: ð16Þ

The methodology for deriving these matrices aligns with the

procedure described in Paper I. These transformation

matrices enable various domain-related calculations, such as

precise calculation of the angles between the SPDs in the

corresponding pair of domains connected along the relevant
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Figure 9
Illustration of a TP1-type pair of domains M12 (domain 1) and M21 (domain 2) connected along the (110) PDW. (a) Real-space illustration: domains are
represented by the 2D lattices within the monoclinic mirror plane (this plane is highlighted in Fig. 1). The lattice nodes of domain 1 and domain 2 are
marked by red and blue colors, respectively. The shaded parallelograms show enlarged sections of the pseudocubic unit cell with explicitly marked
relevant lattice parameters. (b) Reciprocal-space illustration: HK0 section of the reciprocal lattices of domains 1 and 2 (red and blue dots, respectively);
the dashed line is parallel to the PDW, the arrow represents the PDW normal. The separation between the corresponding reciprocal-lattice points is
along the PDW normal.

Table 5
The same as Table 3 just for the case of T-semi-planar types of domain
pair.

Here the second column contains the special values of t ¼ ð2=��Þ½ðc=bÞ � 1�.
The third column contains the eigenvalue of the matrix ½G0�21 � ½G

0�31. The
condition of mismatch-free connection is only relevant for the case if �3TSP 6¼ 0

(otherwise the domain may connect along any plane).

Lattice parameters t �3TSP

[TSP(2)]-wall
orientation

ðc=bÞ � 1 ¼ �� 2 ��
ffiffiffi
6
p

(111)
ðc=bÞ � 1 ¼ ð��Þ=2 1 ��

ffiffiffi
3
p

(211)
�� = 0 1 2½ðc=bÞ � 1� (011)
b = c 0 ��

ffiffiffi
2
p

(100)
1 � ðc=bÞ ¼ �� 2 ��

ffiffiffi
6
p

ð111Þ
1 � ðc=bÞ ¼ ð��Þ=2 1 ��

ffiffiffi
6
p

ð211Þ



PDW. Most notably, the formalism provides expressions for

the separation of Bragg peaks HKL diffracted from these

domain pairs. This separation can be calculated using the

matrix [�S*] between the corresponding reciprocal-lattice

vectors:

a�1n a�2n a�3n

� �
¼ a�1m a�2m a�3m

� �
ð I½ � þ ½�S��Þ: ð17Þ

This leads to the expression for the splitting of the Bragg

peaks, relative to the reciprocal coordinate system of domain

m:

�H

�K

�L

0

@

1

A ¼ ½�S��

H

K

L

0

@

1

A: ð18Þ

Such splitting is routinely measured in high-resolution single-

crystal diffraction experiments (Gorfman & Thomas, 2010;

Vergentev et al., 2016; Zhang et al., 2018; Choe et al., 2018;

Gorfman et al., 2011, 2020, 2021, 2022). Therefore, expression

(18) finds direct application in recognizing connected domain

pairs within 3D diffraction patterns. Remarkably, when

monoclinic distortion parameters (5) are small, both the

elements of these transformation matrices as well as the

components of the Bragg peak separation can be obtained

analytically (see corresponding expressions in sections S2.1–

S2.6).

5. Numerical examples

In this section we illustrate the principles underlying PDWs

and the separation among the associated Bragg peaks,

focusing on the domain pairs of TP1 and TP2 type. Given that

these pairs have a common monoclinic twofold axis, we can

illustrate the connection between such domains on the 2D

drawings within the monoclinic mirror plane which is

perpendicular to this axis [this plane is highlighted in Fig.

1(a)].

For the TP1 case we illustrate the connection between

domains M12M21. These domains have the lattice parameters

c a b �=2 �=2 � and a c b �=2 �=2 �, respectively (Table 1). For

this numerical example, we assumed that ðc=aÞ � 1 ¼ 0:05 and

� = 88�. According to (9) these domains connect along (110)

or ð110Þ PDWs, both walls are normal to the mirror plane. Fig.

9(a) illustrates (110)-connection of these domains. Notably,

these domains can self-organize into a lamella-type micro-

structure pattern, wherein M12 and M21 domains alternate

periodically along the PDW normal. This arrangement intro-

duces the concept of ‘adaptive’ phase as discussed by Jin et al.

(2003), Viehland & Salje (2014). In this concept, the alterna-

tion and miniaturization of domains create states with

macroscopic long-range periodicity and symmetry controlled

by the volume ratios of the domains, rather than their lattice

parameters only. Fig. 9(a) illustrates the possibility of such

alternation while avoiding, however, the effects of domain

miniaturization. Furthermore, Fig. 9(b) depicts the reciprocal

lattices of these domains, clearly indicating that the separation

between the Bragg peak diffracted from the corresponding

matched domains occurs in the direction parallel to the PDW

normal. It is worth noting that additional diffraction effects

may emerge due to domain miniaturization and periodicity, as

described by Wang (2006, 2007) in the case of tetragonal and

rhombohedral nanodomains.

research papers

Acta Cryst. (2024). A80, 293–304 Biran and Gorfman � Permissible domain walls in monoclinic ferroelectrics. Part II 299

c

a

-

a

c

6-

1

2

(a) (b)
Direct lattices Reciprocal lattices

Figure 10
The same as Fig. 9 but for the case of a TP2 pair of domains M12 (domain 1) and M21 (domain 2) connected along the permissible (g10) domain wall.
Remarkably, this PDW is an S-wall, i.e. the orientation of this wall depends on the free monoclinic lattice parameters, according to equation (10).



For the TP2 case we elucidate the connection between M12

and M21 domains. These domains have the corresponding

lattice parameters c a b �=2 �=2 � and a c b �=2 �=2 ��,

respectively (Table 1). According to (10) these domains can

form a connection along S-walls (g10) and ð1g0Þ. In this

specific numerical example, with ðc=aÞ � 1 ¼ 0:05 and � = 88�,

we obtain that, according to (11) and (12), g ’ 0.52. Fig. 10(a)

illustrates the pairing of the M12M21 domains along the (g10)

plane, like Fig. 9(a), while Fig. 10(b) provides visual repre-

sentation of their corresponding reciprocal lattices. It is crucial

to note that the orientation of this wall can vary with changes

in lattice parameters.

6. Summarizing tables

The previous paragraphs and the supporting information

outline the derivation of the equation for the PDWs’ Miller

indices, orientation relationship between the lattice basis

vectors, and the separation of Bragg peaks diffracted from the

representative domain pairs. Similar equations can be derived

for all the other pairs of domains. Tables and figures presented

here list the corresponding quantities for all 84 existing PDWs.

The full list includes:

12 PDWs connecting domain pairs of the type ‘T-sibling-

planar’. All of them are W-walls.

24 PDWs connecting domain pairs of the type ‘T-sibling-

crossed’. 12 of them are W-walls and another 12 of them are S-

walls.

12 PDWs connecting domain pairs of the type ‘T-planar-1’.

All of them are W-walls.

12 PDWs connecting domain pairs of the type ‘T-planar-2’.

All of them are S-walls.

12 PDWs connecting domain pairs of the type ‘T-semi-

planar’. Six of them are W-walls and another six of them are S-

walls.

12 PDWs connecting domain pairs of the type ‘T-semi-

crossed’. Six of them are W-walls and another six of them are

S-walls.

Tables 6–11 contain the list of 84 PDW including 36 S- and

48 W-walls. Each table includes PDW number, the identifiers

of the connected domains, the Miller indices of the corre-

sponding PDW, the orientation relationship and the reci-

procal-space separation between the Bragg peaks diffracted

from this domain pair. In addition, the fifth column of these

tables contains the approximate angle between the SPDs,

providing zero or minimal domain wall charge, meaning that

the SPDs (listed in Table 1) on both sides of the domain wall

should have the same signs as the projection on the domain

wall normal. For example, Table 6 shows that TSBP pair M12

and M12 may connect along the PDWs parallel to either (100)

or (010) lattice planes. According to Table 1 these domains

contain polarization vectors parallel (or antiparallel) to the

directions [1x0] or ½1x0�. The projection of these directions to

the (100) normal is equal to 1 while the projection of these

directions to the (010) plane normal is �x. Accordingly, the

(100) DW should separate domains with the polarization

vectors 1x0½ � j ½1x0� with the angle between them close to 0. In

contrast, the (010) DW should separate domains with the

polarization vectors 1x0½ � j ½1x0� with the angle between them

close to 180�.

Tables 6–11 reveal that certain W-walls have the same

orientations. Table 12 presents all the distinct PDW orienta-

tions and their relevant details. It reveals that all the PDWs

belong to five orientation families {100}, {110}, {2uu}, {g01},

{2tt}, so that PDWs of 45 distinct orientations are present.

Furthermore, the table demonstrates the distribution of PDWs

based on the pair type and the angle between the polarization

directions.

Fig. 11 displays the orientation of all the PDWs for various

choices of lattice parameters. The normals to these walls are
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Table 6
Summary of 12 PDWs connecting domain pairs of the type T-sibling-
planar.

Column 1: DW number. Columns 2 and 3: domain identifiers (per definitions
in Fig. 1 and Table 1). Column 4: Miller indices of the DW. Column 5: angle
between SPDs, corresponding to the condition of zero DW charge. Column 6:

transformation matrix ([�S]) between the basis vectors of the domain m1n1 to
the basis vectors of the domain m2n2. Column 7: separation between the Bragg
peak with the indices H, K, L diffracted from these domains.

N Mm1n1
Mm2n2

(hkl) � (�) [�S] (2��) [�B] (2��)

1 M12 M12 (100) 0

0 0 0

1 0 0

0 0 0

0

@

1

A K

1

0

0

0

@

1

A

2 M12 M12 (010) 180

0 1 0

0 0 0

0 0 0

0

@

1

A H

0

1

0

0

@

1

A

3 M13 M13 (001) 180

0 0 1

0 0 0

0 0 0

0

@

1

A H

0

0

1

0

@

1

A

4 M13 M13 (100) 0

0 0 0

0 0 0

1 0 0

0

@

1

A L

1

0

0

0

@

1

A

5 M23 M23 (010) 0

0 0 0

0 0 0

0 1 0

0

@

1

A L

0

1

0

0

@

1

A

6 M23 M23 (001) 180

0 0 0

0 0 1

0 0 0

0

@

1

A K

0

0

1

0

@

1

A

7 M21 M21 (100) 180

0 0 0

1 0 0

0 0 0

0

@

1

A K

1

0

0

0

@

1

A

8 M21 M21 (010) 0

0 1 0

0 0 0

0 0 0

0

@

1

A H

0

1

0

0

@

1

A

9 M31 M31 (001) 0

0 0 1

0 0 0

0 0 0

0

@

1

A H

0

0

1

0

@

1

A

10 M31 M31 (100) 180

0 0 0

0 0 0

1 0 0

0

@

1

A L

1

0

0

0

@

1

A

11 M32 M32 (010) 180

0 0 0

0 0 0

0 1 0

0

@

1

A L

0

1

0

0

@

1

A

12 M32 M32 (001) 0

0 0 0

0 0 1

0 0 0

0

@

1

A K

0

0

1

0

@

1

A
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Table 7
The same as Table 6 but for PDWs connecting domain pairs of the type T-
sibling-crossed.

N Mm1n1
Mm2n2

(hkl) � (�) [�S] (��=2) [�B] (��=2)

13 M12 M13 (2uu) 0

0 0 0

2 u u

2 u u

0

@

1

A ðK � LÞ

2

u

u

0

@

1

A

14 M12 M13 ð011Þ 180

0 2 2

0 u u

0 u u

0

@

1

A ð2H þ uK þ uLÞ

0

1

1

0

@

1

A

15 M12 M13 ð2uuÞ 0

0 0 0

2 u u

2 u u

0

@

1

A ðK þ LÞ

2

u

u

0

@

1

A

16 M12 M13 (011) 180

0 2 2

0 u u

0 u u

0

@

1

A ð2H þ uK þ uLÞ

0

1

1

0

@

1

A

17 M13 M12 ð2uuÞ 0

0 0 0

2 u u

2 u u

0

@

1

A ðK þ LÞ

2

u

u

0

@

1

A

18 M13 M12 (011) 180

0 2 2

0 u u

0 u u

0

@

1

A ð2H þ uK þ uLÞ

0

1

1

0

@

1

A

19 M12 M13 ð2uuÞ 0

0 0 0

2 u u

2 u u

0

@

1

A ðK þ LÞ

2

u

u

0

@

1

A

20 M12 M13 ð011Þ 180

0 2 2

0 u u

0 u u

0

@

1

A ð2H þ uK þ uLÞ

0

1

1

0

@

1

A

21 M23 M21 (u2u) 0

u 2 u

0 0 0

u 2 u

0

@

1

A ðH þ LÞ

u

2

u

0

@

1

A

22 M23 M21 ð101Þ 180

u 0 u

2 0 2

u 0 u

0

@

1

A ðuH þ 2K þ uLÞ

1

0

1

0

@

1

A

23 M23 M21 ðu2uÞ 0

u 2 u

0 0 0

u 2 u

0

@

1

A ðH þ LÞ

u

2

u

0

@

1

A

24 M23 M21 (101) 180

u 0 u

2 0 2

u 0 u

0

@

1

A ðuH þ 2K þ uLÞ

1

0

1

0

@

1

A

25 M21 M23 ðu2uÞ 0

u 2 u

0 0 0

u 2 u

0

@

1

A ðH þ LÞ

u

2

u

0

@

1

A

26 M21 M23 (101) 180

u 0 u

2 0 2

u 0 u

0

@

1

A ðuH þ 2K þ uLÞ

1

0

1

0

@

1

A

27 M23 M21 ðu2uÞ 0

u 2 u

0 0 0

u 2 u

0

@

1

A ðH þ LÞ

u

2

u

0

@

1

A

28 M23 M21 ð101Þ 180

u 0 u

2 0 2

u 0 u

0

@

1

A ðuH þ 2K þ uLÞ

1

0

1

0

@

1

A

29 M31 M32 (uu2) 0

u u 2

u u 2

0 0 0

0

@

1

A ðH þ KÞ

u

u

2

0

@

1

A

30 M31 M32 ð110Þ 180

u u 0

u u 0

2 2 0

0

@

1

A ðuH þ uK þ 2LÞ

1

1

0

0

@

1

A

31 M31 M32 ðuu2Þ 0

u u 2

u u 2

0 0 0

0

@

1

A ðH þ KÞ

u

u

2

0

@

1

A

Table 7 (continued)

N Mm1n1
Mm2n2

(hkl) � (�) [�S] (��=2) [�B] (��=2)

32 M31 M32 (110) 180

u u 0

u u 0

2 2 0

0

@

1

A ðuH þ uK þ 2LÞ

1

1

0

0

@

1

A

33 M32 M31 ðuu2Þ 0

u u 2

u u 2

0 0 0

0

@

1

A ðH þ KÞ

u

u

2

0

@

1

A

34 M32 M31 (110) 180

u u 0

u u 0

2 2 0

0

@

1

A ðuH þ uK þ 2LÞ

1

1

0

0

@

1

A

35 M31 M32 ðuu2Þ 0

u u 2

u u 2

0 0 0

0

@

1

A ðH þ KÞ

u

u

2

0

@

1

A

36 M31 M32 ð110Þ 180

u u 0

u u 0

2 2 0

0

@

1

A ðuH þ uK þ 2LÞ

1

1

0

0

@

1

A

Table 8
The same as Table 6 but for PDWs connecting domain pairs of the type T-
planar-1.

N Mm1n1
Mm2n2

(hkl) � (�) [�S] ½ðc � aÞ=b� [�B] ½ðc � aÞ=b�

37 M12 M21 ð110Þ 90

1 1 0

1 1 0

0 0 0

0

@

1

A ðH þ KÞ

1

1

0

0

@

1

A

38 M12 M21 (110) 90

1 1 0

1 1 0

0 0 0

0

@

1

A ðH þ KÞ

1

1

0

0

@

1

A

39 M12 M21 ð110Þ 90

1 1 0

1 1 0

0 0 0

0

@

1

A ðH þ KÞ

1

1

0

0

@

1

A

40 M12 M21 (110) 90

1 1 0

1 1 0

0 0 0

0

@

1

A ðH þ KÞ

1

1

0

0

@

1

A

41 M13 M31 ð101Þ 90

1 0 1

0 0 0

1 0 1

0

@

1

A ðH þ LÞ

1

0

1

0

@

1

A

42 M13 M31 (101) 90

1 0 1

0 0 0

1 0 1

0

@

1

A ðH þ LÞ

1

0

1

0

@

1

A

43 M13 M31 ð101Þ 90

1 0 1

0 0 0

1 0 1

0

@

1

A ðH þ LÞ

1

0

1

0

@

1

A

44 M13 M31 (101) 90

1 0 1

0 0 0

1 0 1

0

@

1

A ðH þ LÞ

1

0

1

0

@

1

A

45 M23 M32 ð011Þ 90

0 0 0

0 1 1

0 1 1

0

@

1

A ðK þ LÞ

0

1

1

0

@

1

A

46 M23 M32 (011) 90

0 0 0

0 1 1

0 1 1

0

@

1

A ðK þ LÞ

0

1

1

0

@

1

A

47 M23 M32 ð011Þ 90

0 0 0

0 1 1

0 1 1

0

@

1

A ðK þ LÞ

0

1

1

0

@

1

A

48 M23 M32 (011) 90

0 0 0

0 1 1

0 1 1

0

@

1

A ðK þ LÞ

0

1

1

0

@

1

A



depicted using the poles on the stereographic projection. W-

walls are marked by poles with solid-line edges, and the color

of the pole reflects the angle between SPDs, which is close to 0,

90 and 180� (as specified in Table 4).

7. Conclusion

In this study, we have applied the geometrical theory of

permissible domains walls (PDWs) to compile a comprehen-

sive list of 84 PDWs connecting ferroelastic domains of

monoclinic MC symmetry. Our list not only includes analytical

expressions for the Miller indices of the PDWs but also

matrices for transforming the corresponding pseudocubic

basis vectors and formulas for calculating the reciprocal-space

separation between corresponding Bragg peak pairs. These 84

PDWs encompass 45 different orientations and are organized

into five distinct orientational families.

Our derivation of this extensive list is predicated on the

assumption that the two-step transition from the cubic

(Pm3mÞ phase to the monoclinic (Pm/Pc) phase leads to the

formation of 12 ferroelastic monoclinic domains. The first step

of this transition, from the cubic Pm3m to the tetragonal

P4mm/P4bm phase, results in the creation of three ferroelastic

domains. In the second step, from the tetragonal P4mm/P4bm

to the monoclinic Pm/Pc phase, each of these three domains

divides into a group of four monoclinic domains. We have

identified six distinct types of domain pairs, referred to as ‘T-

sibling-planar’, ‘T-sibling-crossed’, ‘T-planar-1’, ‘T-planar-2’,

‘T-semi-planar’ and ‘T-semi-crossed’, each characterized by

their own expression for the PDW orientation. As previously

shown (Fousek & Janovec, 1969; Sapriel, 1975), we obtained

that the Miller indices of PDWs can either remain fixed (W-

walls) or depend on the values of the monoclinic lattice

parameters (S-walls). Our investigation has revealed that the

orientation of S-walls can be determined by three straight-
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Table 9
The same as Table 6 but for PDWs connecting domain pairs of the type T-
planar-2.

N Mm1n1
Mm2n2

(hkl) � (�) [�S] ½ðc � aÞ=b� [�B] ½ðc � aÞ=b�

49 M12 M21 ð1g0Þ 90

1 g 0

g� 1 1 0

0 0 0

0

@

1

A ðH þ g� 1KÞ

1

g

0

0

@

1

A

50 M12 M21 (g10) 90

1 g� 1 0

g 1 0

0 0 0

0

@

1

A ðg� 1H þ KÞ

g

1

0

0

@

1

A

51 M13 M31 ð10gÞ 90

1 0 g

0 0 0

g� 1 0 1

0

@

1

A ðH þ g� 1LÞ

1

0

g

0

@

1

A

52 M13 M31 (g01) 90

1 0 g� 1

0 0 0

g 0 1

0

@

1

A ðg� 1H þ LÞ

g

0

1

0

@

1

A

53 M12 M21 (1g0) 90

1 g 0

g� 1 1 0

0 0 0

0

@

1

A ðH þ g� 1KÞ

1

g

0

0

@

1

A

54 M12 M21 ðg10Þ 90

1 g� 1 0

g 1 0

0 0 0

0

@

1

A ðg� 1H þ KÞ

g

1

0

0

@

1

A

55 M13 M31 (10g) 90

1 0 g

0 0 0

g� 1 0 1

0

@

1

A ðH þ g� 1LÞ

1

0

g

0

@

1

A

56 M13 M31 ðg01Þ 90

1 0 g� 1

0 0 0

g 0 1

0

@

1

A ðg� 1H þ LÞ

g

0

1

0
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Table 10
The same as Table 6 but for PDWs connecting domain pairs of the type T-
semi-planar.

N Mm1n1
Mm2n2

(hkl) � (�) [�S] ½ð��Þ=2� [�B] ½ð��Þ=2�

61 M12 M32 (t2t) 90

t 2 t

0 0 0

t 2 t

0

@

1

A ðH þ LÞ

t

2

t

0

@

1

A

62 M12 M32 ð101Þ 90

t 0 t

2 0 2

t 0 t

0

@

1

A ðtH þ 2K þ tLÞ

1

0

1

0

@

1

A

63 M13 M23 (tt2) 90

t t 2

t t 2

0 0 0

0

@

1

A ðH þ KÞ

t

t

2

0

@

1

A

64 M13 M23 ð110Þ 90

t t 0

t t 0

2 2 0

0

@

1

A ðtH þ tK þ 2LÞ

1

1

0

0

@

1

A

65 M12 M32 ðt2tÞ 90

t 2 t

0 0 0

t 2 t

0

@

1

A ðH þ LÞ

t

2

t

0

@

1

A

66 M12 M32 ð101Þ 90

t 0 t

2 0 2

t 0 t

0

@

1

A ðtH þ 2K þ tLÞ

1

0

1

0

@

1

A

67 M13 M23 ðtt2Þ 90

t t 2

t t 2

0 0 0

0

@

1

A ðH þ KÞ

t

t

2

0

@

1

A

68 M13 M23 ð110Þ 90

t t 0

t t 0

2 2 0

0

@

1

A ðtH þ tK þ 2LÞ

1

1

0

0

@

1

A

69 M21 M31 (2tt) 90

0 0 0

2 t t

2 t t

0

@

1

A ðK þ LÞ

2

t

t

0

@

1

A

70 M21 M31 ð011Þ 90

0 2 2

0 t t

0 t t

0

@

1

A ð2H þ tK þ tLÞ

0

1

1

0

@

1

A

71 M21 M31 ð2ttÞ 90

0 0 0

2 t t

2 t t

0

@

1

A ðK þ LÞ

2

t

t

0

@

1

A

72 M21 M31 ð011Þ 90

0 2 2

0 t t

0 t t

0

@

1

A ð2H þ tK þ tLÞ

0

1

1

0

@

1

A



forward parameters, u, g, t with u ’ ð2=��Þ½ða=bÞ � 1�,

g ¼ sþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

{here s ¼ ½a=ða � cÞ���} and t ¼ C=D

’ ð2=��Þ½ðc=bÞ � 1�.

The results of our work (both the present one and the

preceding one) can be useful in several ways. Firstly, the

availability of simple analytical expressions for domain wall

orientation aids in describing the domain switching through

domain wall rotation or domain wall motion. Such a process

can be initiated by a change in the temperature or the appli-

cation of an external electric field, for example. Secondly, the

formulas for calculating the separation between Bragg peaks

(as found in Tables 6–11) can facilitate the study of monoclinic

domain patterns, using single-crystal X-ray diffraction. Lastly,

we provide expressions that may prove valuable for precisely

calculating the angles between the spontaneous polarization

directions of various domains.
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Table 12
Five orientation families of PDWs and their distribution between domain pairs of different types.

Column 1: identifier of the orientation family, with {} indicating the list of m3m-equivalent orientations. For example, {110} represents the list of (011), (101), (110),
011
� �

; ð101Þ and ð011Þ. Column 2: number of different orientations within the orientation family. Column 3: number of PDWs of the specific orientation family. The
remaining columns: distribution of these PDWs according to pair type and the ‘zero-charge’ angle between polarization directions.

{hkl} M N TSBP 0 TSBP 180 TSBC 0 TSBC 180 TP1 90 TP2 90 TSP 90 TSC 90

{100} 3 12 6 6 0 0 0 0 0 0
{110} 6 36 0 0 0 12 12 0 0 0
{2uu} 12 12 0 0 12 0 0 0 0 0
{g01} 12 12 0 0 0 0 0 12 0 0
{2tt} 12 12 0 0 0 0 0 0 6 6

All walls 45 84

Table 11
The same as Table 6 but for PDWs connecting domain pairs of the type T-
semi-crossed.

N Mm1n1
Mm2n2
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Figure 11
The directions of all PDW normals. There are a total of 45 distinct PDW orientations distributed among five orientation families. The normals are
depicted using poles on the stereographic projection viewed along the [001] direction, with poles corresponding to the W-walls framed by solid lines. The
lattice parameters are arbitrarily chosen.
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