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Analytical calculations of absorption corrections for X-ray powder diffraction

experiments on non-ideal samples with surface roughness, porosity or absorp-

tion contrasts from multiple phases require complex mathematical models to

represent their material distribution. In a computational approach to this

problem, a practicable ray-tracing algorithm is formulated which is capable of

simulating angle-dependent absorption corrections in reflection geometry for

any given rasterized sample model. Single or multiphase systems with arbitrary

surface roughness, porosity and spatial distribution of the phases in any

combination can be modeled on a voxel grid by assigning respective values to

each voxel. The absorption corrections are calculated by tracing the attenuation

of X-rays along their individual paths via a modified shear-warp algorithm. The

algorithm is presented in detail and the results of simulated absorption

corrections on samples with various surface modulations are discussed in the

context of published experimental results.

1. Introduction

The effective path lengths and therefore attenuation of indi-

vidual X-rays through a sample in an XRD (X-ray diffraction)

or XRF (X-ray fluorescence) experiment depend on the local

microstructure. This leads to absorption effects on the

measured intensities. We summarize all sample characteristics

which differ from an ideally packed, homogeneous and flat

sample as microstructure. This includes surface roughness and

porosity on different length scales as well as the spatial

distribution of crystallites and the ratio of attenuation coeffi-

cients in multiphase samples. All these characteristics may

occur in any combination. For precise data analysis it is

important to know when corrections are needed, how severe

the corrections will be and how the corrections depend on

both the incident and scattering angle.

Harrison & Paskin (1964) showed how the absorption effect

depends on the correlations between the paths of the X-rays in

and out of the sample. They considered each individual path a

diffracted X-ray takes through the sample explicitly, making

their approach theoretically valid for any material distribution

and measurement geometry. If there are no correlations

between the beam paths, there is no angle-dependent

absorption effect. Due to the complexity of mathematically

describing realistic samples within their theoretical frame-

work, Harrison & Paskin applied their theory only to a

homogeneous solid with small and well separated pores

without surface roughness.

To this day, the key problem is the incorporation of

adequate mathematical models, representing real, non-ideal

samples into the calculations of absorption effects. Real

samples present a wealth of microstructural features on
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various length scales, both on the surface as well as in the bulk.

A multitude of different simplifications and mathematical

models has been used to describe real samples when calcu-

lating the effect of absorption on measured intensities.

Periodic, triangular (Borie, 1981) or rectangular

(Masciocchi et al., 1991) modulated 2D surface models allow

the direct calculation of the absorption correction by explicitly

considering each possible X-ray path through the sample

analytically. For more complex models, explicit, analytical

treatment of all X-ray paths is not feasible. Wilchinsky (1951)

used a laminar model, separated into crystallite and grain

layers, to describe a powder sample. Otto (1984) numerically

analyzed the influence of inhomogeneity in a powder sample

with a 2D model of equally sized circles representing indivi-

dual particles. To describe the local 3D microstructure on the

scale of a whole sample, complex statistical approaches are

needed. Correlation functions can be used to describe the

distributions of pores or grains within the bulk of a more

realistic sample (Hermann & Ermrich, 1987; Hermann &

Collazo, 1995) or to describe the height variations along its

surface (Hwang & Houska, 1988).

The difficulty of detailed characterization of real, non-ideal

samples aggravates the verification of any theoretical model.

On the other hand, ray-tracing of individual X-ray paths

through any specific sample model leads to an exact absorp-

tion correction. Simulation of models with variation of speci-

fically chosen parameters provides insight into how certain

microstructure features like roughness, waviness or porosity

influence the angular dependence and magnitude of the

absorption correction. Collazo et al. (1998) used a Monte

Carlo ray-tracing simulation to study the influence of particle

size on the absorption corrections for cylindrical samples

measured in transmission geometry.

Here we present a practical algorithm for the simulation of

absorption effects in XRD experiments in reflection geometry.

The path of individual X-rays through the sample is traced and

a transmission factor for every ray is calculated. The incident

angle � and scattering angle 2� can be chosen independently,

allowing for simulations in symmetric as well as asymmetric

scattering geometries. The material distribution within the

sample is described by a 3D grid of voxels. Ray-tracing on

voxel volumes has been discussed extensively in the context of

X-ray tomography (Graetz, 2022), and we introduce here a

modified shear-warp approach (Lacroute & Levoy, 1994).

Arbitrary surface roughness, waviness, particle distribution

and porosity can be modeled with this approach by adapting

the voxel size to the geometrical complexity and fineness of

the material distribution. Even samples consisting of multiple

phases with different absorption contrasts can be simulated in

order to gain insight into how microabsorption influences

quantitative phase analysis experiments.

We confine the sample models simulated in this publication

to single-phase models without porosity, focusing on the

effects of surface modulations, namely roughness and wavi-

ness. As a proof of concept, we show that the simulation can

exactly reproduce the analytically known corrections for ideal,

flat samples and for the triangular modulated surface analy-

tically analyzed by Borie (1981). We simulate absorption

corrections for rectangular modulated surfaces as well,

discussing predictions made by Borie in the light of our results.

The numerical approach also allows us to study sample models

which more closely represent the surface of typical powder

samples, such as surfaces with pseudo-random height varia-

tions on different lateral scales created on the basis of Perlin

noise. We demonstrate the importance of the lateral material

distribution along the surface by showing its influence on the

angular dependence of the absorption correction.

2. Fundamental principle

The fundamental principle of the simulation algorithm is the

analytical calculation of the absorption of X-rays within a

compact block of homogeneous material and then extension

of the calculation to a sample made up of a large number of

small blocks with possibly different materials. For each indi-

vidual block the paths in and out of the sample are considered.

The ray-tracing is realized by shifting the entire sample model

with respect to the incident and diffracted angle before the

calculation of the transmission factors. We assume a perfectly

parallel incoming beam. Furthermore, we assume that each

model is large enough to be a statistical representation of the

microstructure of the sample. In this case, considering each

individual beam path within the model gives an absorption

correction that is statistically representative of the whole

sample as well. We are working within the kinematic scattering

theory, so multiple scattering is assumed to be negligible.

Consider an individual X-ray hitting a homogeneous and

flat sample at an incident angle � relative to the surface, as

illustrated in Fig. 1. As the ray propagates along a path of

length lin through the sample, its intensity is attenuated

according to Beer’s law by expð� �linÞ, where � is the linear

attenuation coefficient of the material. Along the path of the

X-ray a fraction of the intensity is diffracted with the

diffraction angle 2�. Each diffracted ray propagates out of the

sample along the path lout at an angle � = 2� � � relative to the

surface.

The linear attenuation coefficient summarizes absorption,

incoherent and coherent scattering. For X-rays the absorption
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Figure 1
Beam path of an individual X-ray being scattered in depth z in a
homogeneous, compact layer of thickness t.



coefficient is much larger than the scattering coefficient.

Because the difference between the attenuation coefficient

and absorption coefficient is negligible, the linear attenuation

coefficient is used before and after the scattering event.

The total path an individual ray has traveled through the

sample before reaching the detector is lin + lout. The fraction

of intensity reaching the detector after the path lin + lout

through the sample is given by the transmission factor

exp½� �ðlin þ loutÞ�. The total intensity observed at the

detector is proportional to the sum of the transmission factors

of all individual ray paths through the sample. In the limit of

infinitesimal small path elements dl between scattering events

this sum converges to the integral

Rlmax

0

exp½� �ðlin þ loutÞ� dlin; ð1Þ

where lmax is the longest possible path into the sample.

Changing the integration variable to run over the depth z of

the sample rather than along the incident ray dlin leads to the

expression of lin and lout as a function of the depth z in which

the respective scattering event took place. The path out of the

sample is always lout ¼ z=sin �. Substitution of lin ¼ z=sin �

also changes the integration variable dlin ¼ dz=sin �. The

integration then covers the whole sample thickness along the z

direction, from 0 at the surface to the maximum thickness t of

the layer,

I / Veff ¼ A

Zt

0

exp � � z
1

sin �
þ

1

sin �

� �� �
dz

sin �

¼
A

�
1þ

sin �

sin �

� �� 1

1 � exp � � t
1

sin �
þ

1

sin �

� �� �� �

:

ð2Þ

Here A is the cross section of the incident beam. The total

intensity observed at the detector is proportional to the

attenuation each ray of the incident beam experiences along

its path through the sample. Therefore, the integration needs

to cover the whole incident beam. Since we assume a perfectly

parallel beam with homogeneous intensity distribution and

the layer is homogeneous in both x and y directions, the total

incident intensity is simply proportional to the cross section of

the incident beam A.

The proportionality factor Veff is called the effective scat-

tering volume. To obtain the absorption correction for any

arbitrary measurement geometry, Veff is calculated once for

the measurement geometry of interest and once for the

reference geometry with which the measurement should be

compared, which is usually the symmetric geometry on an

infinitely thick (t � �� 1) and homogeneous sample. Substi-

tuting � = � = � and taking the limit for t!1 of equation (2)

results in the known, constant factor of

Veffð� ¼ � ¼ �; t!1Þ ¼
A

2�
: ð3Þ

The absorption correction Ca is the ratio of both effective

scattering volumes, describing how absorption changes the

result of a measurement relative to the chosen reference

(Rowles & Buckley, 2017),

I / Cað�; �; tÞ ¼
Veffð�; �; tÞ

Veff
refð� ¼ � ¼ �; t!1Þ

: ð4Þ

Equations (2) and (4) are well known results and describe

infinitely thick samples and layer systems with compact, flat

and homogeneous layers parallel to the surface. To extend the

formalism to inhomogeneous samples, we need to consider

that the attenuation along each individual ray path through

the sample will be different depending on where the beam hits

the surface and where the beam is diffracted. To model a

sample with arbitrary surface roughness and porosity, the

sample is divided into a 3D grid of equally sized, cubic voxels

with edge length d, as illustrated in Fig. 2. Each voxel is either

filled homogeneously with material or empty.

An X-ray will be attenuated by exp(� �l) in each voxel the

beamlet passes on the way in and out of the sample, where l is

the geometric beam path within a voxel. Empty voxels do not

contribute to the total attenuation and are assumed to be fully

transparent to the radiation. Each diffracting voxel itself is

compact and homogeneously filled with material, so its

effective scattering volume Veff
voxel can be calculated with

equation (2). The effective scattering volume of every indivi-

dual voxel needs to be weighted with the attenuation of the

X-ray beamlet along the total incident path to the corre-

sponding voxel and the attenuation along the X-ray path after

diffraction to the sample surface. The total effective scattering

volume Veff of the whole sample is then the sum over the

weighted effective scattering volumes Veff
voxel of all voxels.

The absorption correction Ca can then be calculated with

equation (4). This normalization will be discussed in detail in

Section 3.1.

With this approach the absorption correction for any

combination of incident and diffracted angle for any sample

model can be calculated accurately, provided the micro-

structure of the sample is modeled with a sufficiently fine voxel

grid. The limitations of the voxel grid resolution are discussed

in detail in Section 4.3.
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Figure 2
Model of a 2D slice of the material distribution in a single-phase sample
exhibiting porosity and surface roughness. Incoming and diffracted
X-rays experience significantly different attenuations depending on the
location of the scattering event, which ultimately leads to absorption
effects.



3. Technical implementation

The material distribution in a generally inhomogeneous

sample is represented by a binary 3D array M ¼ ðmz;x;yÞ with

Nx, Ny, Nz entries in the x, y and z directions. A filled voxel is

represented by the numerical value 1, an empty voxel by 0.

Each 2D cut along the z and x directions of the material

distribution represents the sample in a single plane of inci-

dence. Assuming a perfectly parallel beam in all dimensions,

the incident rays propagate only in the zx plane. Therefore,

the 3D problem can be treated as the average over multiple

2D slices through the material distributions. Consequently,

any simulation of a 2D model will result in the same absorp-

tion correction as a 3D model which has a constant material

distribution along the y direction. For illustration of the

simulation algorithm, only 2D slices along the z and x direc-

tions are shown in the figures. The mathematical formalism is

nevertheless described below for a 3D material distribution.

The incident, parallel X-ray beam is subdivided into NxNy

individual beamlets, one for each voxel at the surface of the

material distribution. For each voxel mz,x,y in the material

distribution array M the corresponding transmission factor

T ¼ tz;x;y for an X-ray beamlet penetrating the voxel along

path l is calculated as

T ðM; �; lÞ : mz;x;y ! tz;x;y ¼ expð� �lmz;x;yÞ: ð5Þ

In the following arrays will always be denoted by a bold letter,

while the element-wise defined operations resulting in the

corresponding array are denoted with the respective calli-

graphic letter. In order to obtain the intensity reaching a voxel

in depth z, the transmission coefficients of all penetrated

voxels along the path towards that voxel are multiplied.

First, we consider the special case of a beam with incidence

and diffracted angles normal to the surface of the sample. The

individual steps in the calculation are illustrated in Fig. 3. For

normal incidence, the path l through each voxel in equation

(5) is equal to the edge length d of a voxel. In this special case

the cumulative product along the z direction of all the trans-

mission factors results in another array C, where each entry

cz,x,y is the total transmission coefficient up to that voxel.

The beamlet reaching a voxel in depth z is only attenuated

by the z � 1 voxels above. Since the incident beam hitting the

first layer is not yet attenuated, the value in the first layer of C

represents the incoming intensity I0
z;x;y per individual X-ray

beamlet. We assume all beamlets have the same, normalized

intensity I0
z;x;y ¼ 1, but generally any intensity distribution in

the incident beam could be used. The transmission through the

last layer is irrelevant, since the beamlet has transmitted the

sample and no additional scattering event can occur. Formally,

the array of cumulative transmission factors C ¼ cz;x;y can be

calculated element-wise from the array of transmission factors

T as

CðTÞ : tz;x;y ! cz;x;y ¼
I0

z;x;y ¼ 1 for z ¼ 0
Qz� 1

z0¼0 tz0;x;y otherwise:

�

ð6Þ

So far, we have only considered attenuation of the incident

beamlets. The calculation of the attenuation from the voxel

out of the sample follows the same principle, as the direction

in which a voxel is penetrated is not of importance for the

transmission factor. In the special case of normal incidence

and backscattering � = � = 90�, the path of an X-ray beamlet

to and from a diffracting voxel is identical, leading to identical

arrays for the total transmission factors.

To get from the total contribution of a single voxel to the

total intensity diffracted from the sample, the transmission

factors for the incident and diffracted beamlet need to be

multiplied together with the individual effective scattering

volume per voxel Veff
voxel. Veff

voxel can be calculated via equation

(2). As we are now considering a rasterized surface, the beam

cross section A becomes the constant area of a voxel Avoxel.

Since the absorption correction will be calculated as a ratio of

effective scattering volumes anyway [see equation (4)], the

exact value of Avoxel is irrelevant. To take into account that

empty voxels do not contribute to the scattered intensity, the

transmission factors are multiplied with the original, binary

material distribution. Finally, summation over all voxels

results in the total effective scattering volume for � = � = 90�,

Veffð� ¼ � ¼ 90�Þ ¼

Veff
voxel �

PNx

x¼0

PNy

y¼0

PNz

z¼0

CðT ðMÞÞ � CðT ðMÞÞ �M: ð7Þ

The symbol � describes element-wise multiplication of each

individual element in the corresponding arrays.

To generalize the above concept to all scattering geome-

tries, we consider a pair of incident and diffracted angles �, �

6¼ 90�. The path of the beamlet through the sample will no

longer be confined to only a single column. Instead of calcu-

lating the traversed amount of material along every oblique

ray path through the sample, the whole material distribution

research papers

318 Johannes Dallmann et al. � Universal simulation of absorption effects Acta Cryst. (2024). A80, 315–328

Figure 3
Illustration of the mathematical operations used to calculate the transmission factors for each voxel in the case of normal incident X-rays. In the first step
an individual transmission factor for each voxel is calculated. Secondly, the transmission factors are cumulatively multiplied along the depth of the
sample and shifted by one layer down to obtain the amount of intensity reaching a certain depth z. Finally, element-wise multiplication with the original
material distribution M ensures empty voxels will have an effective scattering volume of 0.



can be shifted layer by layer in such a way that all voxels along

the originally oblique path are stacked in a single column, as

illustrated in Fig. 4. After the shift, the cumulative transmis-

sion factors C can be calculated with equation (6) analogous to

the case of normal incidence.

For an arbitrary incident angle � the required shift �s in

layer z is given by

�sðz; �Þ ¼
z

tan�
: ð8Þ

Generally, �s is not an integer value. Therefore, after the shift,

two voxels may be partially located at the position of the

original voxel, as depicted in Fig. 4. In order to account for

these non-integer shifts, values in the new voxel are inter-

polated between both old voxels. Physically this corresponds

to an averaging of the material content in the original voxels,

which is consistent with the finite width of each beamlet. We

assume periodic boundary conditions for the shift, meaning

any voxels shifted out of the original size of the array are

reinserted on the other side. With equation (8) the whole array

shifting operation SðMÞ can be expressed element-wise as

SðM; �Þ : mz;x;y ! m0z;x;y ¼ mz;x� d�se;y � w

þmz;x� b�sc;y � ð1 � wÞ

with mz;� x ¼ mz;Nx � x

w ¼ �s � b�sc; ð9Þ

where b c and d e denote the floor and ceiling function,

respectively, and w is the linear interpolation weight.

The procedure needs to be applied separately for the inci-

dent Ci and diffracted Cd beam. Since � and � are defined with

different rotation, the diffracted angle � needs to be adjusted

to �0 = 180� � � in order to perform the shift obtained with

equation (8) in the correct direction when calculating Cd.

After the computation, the arrays need to be shifted back into

the original coordinate system. Only then are the cumulative

transmission factors correctly assigned to the voxel to which

they correspond. With equations (5), (6) and (9) Ci and Cd can

be expressed as

Ci ¼ SðCðT ðSðM; �ÞÞÞ; � �Þ ð10Þ

Cd ¼ SðCðT ðSðM; �0ÞÞÞ; � �0Þ: ð11Þ

The arrays Ci and Cd hold the total transmission factor an

X-ray experiences along the path towards any voxel and from

the voxel out of the sample, respectively. Consequently, the

element-wise multiplication of both arrays results in the total

transmission factor with which the effective scattering volume

within the voxel needs to be weighted. However, not only does

the material along the path of the X-rays change with the

oblique angle, but also the path lengths through a given voxel.

For any incident angle � or diffracted angle �, the path length l

through each voxel changes according to

lin ¼
d

sin �
lout ¼

d

sin �
: ð12Þ

At angles smaller than 45�, the oblique path even traverses

more than two voxels in a single layer, as illustrated in Fig. 5.

The smaller the angle, the larger the amount of traversed

voxels. Therefore, sublayers need to be introduced for angles

<45�. Sublayers divide any given single layer of voxels into

multiple layers with the same material content. The resulting

voxels are no longer square, as their length along the z

direction is reduced proportional to the number of new

sublayers.

The amount of sublayers required is angle dependent as the

sublayers need to be small enough to ensure that the oblique

path through a given layer passes through at most two voxels.

Thus, the voxel thickness dz changes to

dz ¼ d�
1

tanðminðj�j; j�jÞÞ

� �� 1

: ð13Þ

Since the calculation of Ci and Cd is defined element-wise, the

calculation does not change for the subdivided arrays, only the

new voxel thickness dz needs to be taken into account. To

guarantee that Ci and Cd are of the same size for the subse-

quent element-wise multiplication, the subdivisions need to be

equal and sufficient for both the incident and diffracted angle.

Therefore, the smaller angle minðj�j; j�jÞ is used for the

calculation of the number of required subdivisions.

Finally, the effective scattering volume of each voxel Veff
voxel

is calculated according to equations (12) and (13). Veff
voxel is

then multiplied with the transmission factors in and out of the

sample and summed up over the whole sample. Multiplication

with the original material distribution M again ensures that

empty voxels do not contribute to the sum. The result is the

effective scattering volume of the whole sample,

I / Veff ¼
Pvoxels

Veff
voxel � Ci �M� Cd: ð14Þ

The above algorithm can be straightforwardly extended to

models consisting of multiple phases by taking into account a

binary material distribution for each phase. To calculate the
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Figure 4
Illustration of the layer shift SðM; �Þ implemented to stack all voxels
penetrated by the oblique incident beam in one column, in order to
subsequently calculate the cumulative transmission coefficients along that
path. We assume periodic boundary conditions.

Figure 5
(a) X-ray beamlet passing through more than two voxels requiring (b)
subdivisions to ensure the interpolation between two voxels is sufficient
to describe the whole beam path within a single layer.



transmission factors for multiphase samples, all phases need to

be taken into account, since every voxel filled with material

will attenuate a passing X-ray according to its phase-specific

linear attenuation coefficient. The final summation of effective

scattering volumes is done in a phase-specific way, since the

diffraction is phase specific as well.

The ray-tracing of individual X-rays is handled with basic

array manipulations only and is therefore easily accessible. It

is implemented in Python/numpy. On conventional hardware

[a desktop PC with an Intel Core i5-6500 processor

(4 � 3.20 GHz) and 16GB RAM] the simulation runs on

reasonable timescales. For example, a simulated measurement

with 36 individual angle pairs for a model consisting of roughly

2 � 108 voxels (see Fig. 14) takes just under 1 h. Since the

attenuation of X-rays within each voxel is explicitly calculated,

the limiting factor for the resolution of the voxel grid is the

accuracy with which the microstructure of the sample can be

modeled. Therefore, larger samples with larger microstructure

features can be modeled with lower resolution without sacri-

ficing the accuracy and precision of the resulting absorption

correction, while simultaneously keeping the computational

effort the same. The management of input and output data is

handled via files in the .hdf5 format.

3.1. Calculating the absorption correction Ca

The absorption correction Ca is the scaling factor which

scales the measured intensity for a sample with arbitrary

microstructure to the intensity expected in a symmetric

measurement of the same material without microstructure.

The measured intensity is proportional to the effective scat-

tering volume calculated by the algorithm. As shown in

equation (4), to obtain the absorption correction Ca, the

effective scattering volume Veff for a measurement of a sample

with microstructure needs to be normalized with the effective

scattering volume Veff
ref for a symmetric measurement of the flat

and compact reference sample. Doing so isolates the absorp-

tion effects originating from the microstructure of the non-

ideal sample. A complete measurement can be simulated by

systematically varying the incident and/or diffracted angles

and calculating the effective scattering volume for each pair of

angles. Since Ca is a scaling factor, experimentally measured

intensities need to be divided by Ca in order to obtain the

corrected intensities without the influence of absorption.

Veff
ref can be obtained without having to explicitly model an

ideal sample. For normal incidence and backscattering, the

X-ray paths in and out of the sample are identical. Assuming

an infinitely thick sample and no absorption in empty voxels,

the effective scattering volume at � = � = 90� is independent of

the microstructure of the sample and is always identical to that

of a flat and compact sample. Since the effective scattering

volume for flat and compact samples is also angle independent

[see equation (3)], the absorption correction Ca can be

calculated by normalizing the effective scattering volume at

every angle of the measurement with the effective scattering

volume at � = � = 90�.

Other normalizations are possible, since the effective scat-

tering volume can be calculated for any measurement

geometry and for any sample model. For example, asymmetric

measurements can be scaled to symmetric ones on the same

sample. Experimentally, measuring a sample in both

symmetric and asymmetric conditions is typically easier than

obtaining a perfectly flat reference sample, if a perfect refer-

ence sample can be obtained at all.

Our algorithm works for sample models with any thickness.

The total effective scattering volume is naturally limited by the

amount of material in the sample. Scaling the total effective

scattering volume of a thin sample to the effective scattering

volume of an infinitely thick (�t � 1) sample yields the thin

film correction. Working with thin sample models which

exhibit microstructure will of course lead to a correction Ca

that respects both the influences of sample thickness and

microstructure. In this case an additional simulation of an

infinitely thick sample is required to obtain Veff
ref .

4. Verification of the algorithm

To validate the programmed ray-tracing algorithm and its

implementation, we simulate absorption corrections on simple

sample models for which the exact analytical solution is

known. Firstly, we show that the ray-tracing algorithm repro-

duces the absorption corrections calculated for a flat sample

without any microstructure. Secondly, simulated absorption

corrections for a periodically modulated, triangular sample

model are compared with their exact analytical solution

calculated by Borie (1981).

4.1. Simulations for samples without microstructure

The absorption corrections for flat, homogeneous and

compact samples can be calculated analytically with equations

(2) and (4). For comparison, the absorption correction for an

equally flat, homogeneous and compact sample model can be

calculated numerically with the ray-tracing simulation. The

individual voxels in the sample model have an edge length of

�d = 5 � 10� 3. An X-ray traveling perpendicular through a

voxel of this length would lose about 0.5% of its intensity.

Generally, the sample models used in this publication are

‘infinitely thick’ (�t� 1), making transmission effects through

the whole sample negligible. Unless stated otherwise, we used

in all simulations an intensity cut-off criterion of 10� 5. If all

individual beamlets reaching the detector have been atte-

nuated at least to a factor of 10� 5, the calculations are stopped.

Only two measurements on the flat surfaces are simulated with

thinner sample models to compare the results with the

analytical thin film correction. Since we assume no divergence

of the incident beam, it is sufficient to simulate the absorption

correction for a 2D cross section of the sample model along

the direction of the incident beam.

The absorption corrections are simulated for three different

measurement geometries: the symmetric �–� geometry and

two asymmetric measurement geometries where either � or 2�

are kept constant during the measurement and the respective
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other angle is varied. In practice, measurements of entire

powder diffraction patterns with constant incident angle � are

typically used for the analysis of thin film samples. Measuring

a single Bragg reflection at variable incidence angles provides

information about possible compositional depth profiles,

texture or strain within the sample.

Fig. 6 shows the simulated and analytical absorption

corrections for the three measurement geometries. For every

geometry the simulation reproduces the analytical result

exactly. The simulation of symmetric measurements on the

thin sample models also reproduces the analytically calculated

thin film correction.

4.2. Triangular modulated surfaces

To show the validity of the ray-tracing we compare the

simulated absorption correction with the exact analytical

solution for a sample with microstructure. Borie (1981)

calculated the exact absorption paths through a sample whose

surface is periodically modulated by isosceles triangles with a

slope angle � = 45�. The slope angle is the angle between the

flat surface normal and the slope of each triangle. The model is

illustrated in Fig. 7(a). In his calculations Borie assumed

symmetric measurements on an infinitely thick sample. The

only variable parameter was the absorption-weighted height

of the triangles �h. In the context of absorption, length scales

are only meaningful relative to the linear attenuation coeffi-

cient � of the material, which is why the length scales of all

models are given relative to �.

In order to compare the simulation algorithm with Borie’s

analytical solution, we modeled the triangular surface by a

grid of voxels with edge lengths �d = 5 � 10� 3. The model is

restricted to one repeating unit in 2D which is sufficient due to

the periodic boundary conditions.

The simulated absorption corrections are in good agree-

ment with the absorption corrections Borie presents in his

publication, as illustrated in Fig. 7(b). The deviations between

the calculated corrections and the simulated corrections for

angles smaller than 18.4� result from the equations given in his

paper, but are not present in the original plot of the correc-

tions by Borie. The equations given by Borie (1981) are

discussed in the supporting information.

4.3. Influence of model resolution

To assess the voxel size required to obtain accurate

corrections, we simulated Borie’s triangular models with

varying voxel lengths and compared how closely the simulated

absorption corrections agree with the analytically calculated

solution.

The used voxel sizes range from the fine resolution used in

the previous simulations of �d = 5 � 10� 3 to �d = 0.5, a very

coarse resolution which is technically no longer suitable to

model a triangle. The absorption corrections for all resolutions
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Figure 6
Comparison between analytical (solid line) and simulated (dots)
absorption corrections Ca for three different measurement geometries for
a flat, homogeneous and compact sample: (a) � scans at constant 2�, (b)
symmetric measurement with � = � = � on samples with variable thickness
�t and (c) 2� scans at constant �. If not specified otherwise, the simulated
models were infinitely thick (�t � 1). The simulations reproduce the
analytical results for all three geometries.

Figure 7
(a) Sketch of a surface modulated with isosceles triangles. It is sufficient
to simulate one repeating unit due to the periodic boundary conditions.
(b) Comparison between the analytical absorption corrections calculated
by Borie (1981) (solid line) and the simulated absorption corrections
(points) on a triangular modulated surface with a slope angle of 45� for
variable heights �h. The results are in good agreement apart from the
discontinuity at � = 18.4� which is discussed in the supporting information.



are plotted in Fig. 8. We calculated the root-mean-square

deviation (RMSD) for each voxel size, defined as

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðysim
i � y

exp
i Þ

2

v
u
u
t ; ð15Þ

with the number of data points N, the value of the simulated

data points ysim
i and the analytically expected values y

exp
i . The

comparison is limited to the angular range above 18.4� (see

Fig. 7). The RMSD is fitted with a linear curve on a double

logarithmic scale:

logðRMSDÞ ¼ ð1:21� 0:04Þ logð�DÞ � ð1:17� 0:05Þ: ð16Þ

Comparing analytical and numerical solutions for each reso-

lution shows that even moderate sampling produces results

with less than 1% deviation from the actual analytical solu-

tion. Generally, the resolution of the sample models needs to

be chosen relative to the size of the microstructure features of

the sample. The relationship between voxel size and RMSD is

nearly linear, as it can be described with a power law with

exponent 1.21 � 0.04.

The simulated absorption corrections and their analytical

counterparts are in agreement with each other for both flat,

compact samples and for Borie’s triangular surfaces. We

conclude that the summation of the individual, weighted

scattering volumes in each voxel and the shifting of the

material distribution to calculate oblique-angled paths

through the sample are valid.

5. Periodically modulated rectangular surfaces

Borie predicts in his paper that the low-angle limit of the

absorption correction would approach 0.5 for a square-wave

modulated surface when the edge of the squares becomes long

enough. Rectangular and therefore also square-wave surfaces

in 2D are straightforward to model. The respective absorption

corrections can be simulated and compared with the results for

the triangular surfaces. Fig. 9 shows a sketch of a rectangular

surface and its absorption corrections for the symmetric

measurement geometry and a square-wave model. Here, only

the edge length �að¼ �h ¼ �b ¼ �lÞ of the individual

squares has been varied.

Similar to the triangular surface modulations, the minimum

in the absorption corrections results from X-rays hitting the

bulk of the sample model directly without being absorbed in

rectangles beforehand. For a non-transparent material (�!

1) the theoretical minimum is expected at 63.4�. However,

due to the transparency of the material the minimum is slightly

shifted from the geometrically expected value, as X-rays with

very short paths through the corner of a rectangle are hitting

the bulk of the model already at slightly smaller angles. When

�b is small enough the X-rays may even penetrate one or

more rectangles fully before hitting the bulk of the model,

leading to ‘higher-order minima’ in the absorption correction

at accordingly smaller angles, as illustrated in Fig. 10. This is of

course an effect originating from the strict periodicity of these

surface modulations. However, the higher-order minima

demonstrate that the lateral material distribution on a scale

larger than �� 1 is of importance for the absorption correction.
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Figure 8
Simulations of a triangular sample model with �h = 1 with varying voxel
edge lengths �d. The repeating unit of three of the models with signifi-
cantly different voxel sizes is illustrated above the plot. In the inset the
root-mean-square deviation (RMSD) between the simulations and
Borie’s analytical solution is plotted over the voxel size.

Figure 9
(a) Sketch of the rectangular surface model. (b) Absorption corrections
Ca simulated for square-wave modulated surfaces with different edge
length �a ð¼ �h ¼ �b ¼ �l). The lines through the simulated data
points serve as a guide to the eye.



In contrast to the triangular surfaces the absorption

corrections for square-wave surface modulations do not

approach unity for small angles. Borie (1981) predicted that

the absorption correction should approach 0.5 for large

squares. For a square-wave surface model, 0.5 is the fraction of

material in the topmost layer at z = 0. X-rays not hitting the

top of a square are completely absorbed before they can exit

the sample. The actual limit determined with our simulation

for the square-wave surfaces is slightly higher than one half as

there are always at least some X-rays which are diffracted at

the side of the square and travel out of the sample through the

corner of the rectangle.

These effects can be understood by visualizing where in the

sample the scattered intensity comes from. Since the simula-

tion algorithm calculates the effective scattering volume for

every voxel of the sample model explicitly, it can also be used

to visualize the contribution of each individual voxel to the

total scattering volume. Such a visualization is generally

helpful to understand the angular dependence of the

absorption correction and is depicted for a square-wave

surface in Fig. 11. Animations of how these contributions

change with each simulated angle for both a rectangular

and triangular surface can be found in the supporting

information.

6. Influence of the lateral material distribution on the

absorption correction

With the numerical approach of the simulation, the complexity

of the analyzable models is not limited by the complexity of

the exact analytical calculations. It is possible to calculate a

precise absorption correction for any material distribution.

The defining geometric parameters of a surface model can be

systematically varied and their influence on the absorption

correction can be analyzed. We analyze the importance of the

lateral material distribution along the surface by simulating

both simple periodic and pseudo-random surfaces with

varying short-range roughness and long-range waviness.

6.1. Periodically modulated triangular surfaces

Due to the complexity of the calculations, Borie only

calculated the exact absorption paths for isosceles triangles

with 45� slope. In the spirit of Borie, we consider periodically

modulated surfaces as a simplified type of roughness. The ray-

tracing simulation can calculate the absorption correction for

triangular models [Fig. 7(a)] with variable triangle shape and

size. The influence of the geometric parameters defining the

triangular surfaces on the absorption correction can be

analyzed and allows conclusions to be drawn on the impor-

tance of the lateral material distribution along a surface.

In Fig. 12 the absorption corrections for three models with

constant slope length �s = 1 and different slope angles � are

plotted. This translates into different Rpv values. The peak-to-

valley distance Rpv is defined as the vertical distance between

the highest and lowest point in the surface, regardless of

lateral distance. The position of the minimum in Ca shifts to

the respective slope angle �. With constant slope length the

value at the minimum is constant as well. The two defining

properties for a periodic surface bound by isosceles triangles

are the slope angle � and slope length �s, with � defining the

position and �s defining the value of the absorption correction

Ca at the minimum.

Triangular surfaces also allow us to model samples with

identical height variations on different lateral scales in order
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Figure 10
Illustration of the origin of higher-order minima in the absorption
correction for a rectangular model with �b = 0.5 and �h = �l = 1. If �b is
small enough, incident and diffracted X-rays may penetrate multiple
rectangles before hitting the bulk, leading to the observed minima. The
geometrically expected angles and the actual angle of the minima do not
match exactly due to partial transmission of X-rays through the rectan-
gles.

Figure 11
Distribution of the effective scattering volume for a square-wave
modulated surface. The visualization shows how the parts of the sample
contributing to the total effective scattering volume change with the angle
and how the bulk of the sample only significantly contributes at angles
high enough for the X-rays to leave the sample without having to go
through a square on their way out.



to analyze the influence of the lateral material distribution on

the absorption correction. Keeping the triangle height

constant while changing the slope angle leads to a continuous

transition from surface roughness to long-range surface

waviness. Of course, the distinction between roughness and

waviness in the context of absorption always needs to be made

relative to the absorption length �� 1. The resulting absorption

corrections in Fig. 13 show significant differences in their

angular dependency. With decreasing slope angle, the

minimum shifts to smaller angles as well. Due to the simul-

taneously increasing slope length, the minimum becomes

deeper. The angular range in which the absorption corrections

have a value significantly different from unity also becomes

smaller with decreasing slope angles. In the limit of very small

slope angles the absorption correction consequently approa-

ches the constant correction expected for flat samples, as the

sample model gets increasingly closer to a flat surface.

6.2. Pseudo-random 2D surfaces

The surfaces of samples typically used in powder diffraction

experiments are not strictly periodic, but have randomly

distributed height variations on varying lateral scales. Simple,

periodic 2D sample models provide analytical access to the

exact absorption correction. However, one may argue that the

strict periodicity may also give rise to features in the correc-

tions which are not to be expected for a surface with random

material distribution. The simulation approach enables us to

calculate a correction for arbitrary sample models, provided

they are modeled with sufficient accuracy on a voxel grid. We

created models with pseudo-random surfaces with Perlin noise

(Perlin, 1985, 2002) as a basis for the material distribution.

With this approach we can compare absorption corrections

simulated on samples which exhibit non-trivial surface

features on varying lateral and vertical scales.

To model samples with pseudo-random surfaces as seen in

Fig. 14, first a 2D image of Perlin noise is generated [imple-

mentation in Python from Vigier (2019)]. The noise is used as

height data for the final 3D model. Multiplication of the

normalized noise with a scaling factor changes the range of the

height variations of the resulting surface. The used scaling

factor simultaneously defines the peak-to-valley distance Rpv

of the surface. The cubic gradient grid used to create the Perlin

noise defines the lateral scale of the surface modulations and is

described by the distance between its nodes �ln. We differ-

entiate between roughness and waviness by the lateral scale of

height variations in the surface relative to �� 1. A fine gradient

grid with lateral scales much smaller than the attenuation

length �ln�1 results in a rough surface. On the other hand,

surfaces with lateral scales approaching or exceeding �ln � 1

are referred to as wavy. As implied by our algorithm, all

models were created with periodic boundary conditions in the

x direction, explicitly avoiding inadvertent discontinuities.

We used normalized 2D Perlin noise with a fine gradient

grid �ln = 0.1 to create a set of models which exhibit a

different range of height variations Rpv on an identical lateral

scale. This corresponds to a rough surface without waviness.

The rough surfaces and the resulting absorption corrections

are depicted in Fig. 14(a). Only the surfaces are shown, but all

models are thick enough to neglect any transmission effects.

The simulated absorption corrections show no strong angular

dependence, especially in the range of a typical symmetric

experiment (10�–140� 2�). All absorption corrections are close

to unity, even if the height variations Rpv are as large as the

absorption length. The small offset from unity is proportional

to the Rpv value of the surface.
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Figure 13
Simulated absorption corrections with constant triangle height �h = 0.25
and varying slope angle �. The inset shows that the material fraction over
the depth does not change for these five models. Nevertheless, due to the
change in slope length with the angle the minimum shifts to smaller values
with decreasing slope angle. The lines through the simulated data points
serve as a guide to the eye.

Figure 12
Simulated absorption corrections for triangular modulated surfaces with
variable slope angle �, but constant slope length �s = 1. The lines through
the simulated data points serve as a guide to the eye. The position of the
minimum changes, while the value at the minimum stays constant within
the accuracy of the simulation.



Similarly to the rough surfaces, surfaces exhibiting waviness

with variable Rpv can be modeled by using an image of Perlin

noise with a larger gradient grid �ln = 1. The simulated

absorption corrections have a strong angular dependency and

show significant differences depending on Rpv. Even at �Rpv =

0.1, the lateral distribution of the material leads to a significant

correction at small angles which quickly approaches unity at

larger angles. The larger the ratio between lateral distances

�ln and vertical distances �Rpv gets, the smaller is the angular

range in which the correction is significant. Surfaces with more

pronounced height variations on the same lateral scale

produce absorption corrections which differ from unity over

the whole angular range from � = 0� to � = 90�.

6.3. Pseudo-random surfaces exhibiting roughness and

waviness

Multiple instances of Perlin noise created on different

gradient grids can be superimposed, to create a sample model

with both short-range roughness as well as long-range wavi-

ness along its surface. Generally, it can be expected that real

powder samples exhibit height variations on multiple lateral

length scales. The degree of these variations depends of course

on the particle size distribution and on the method of

preparation. Such a surface with combined roughness and

waviness is depicted in Fig. 15.

Over most of the angular range, specifically at higher angles,

the absorption correction is nearly identical to that of the

purely rough surface, which also shows the same offset from

unity as the combined surface. As already indicated by the

previous simulations, the waviness leads to an increase of the

absorption correction at small angles. The same effect is

observable for the combined surface, although the effect of

the waviness is damped by the roughness. The surface exhi-

biting pure waviness without short-range roughness shows a

more pronounced increase of the correction values in the low-

angle regime. Nevertheless, the absorption correction of the

combined surface clearly reveals influences from both its

roughness and its waviness even though the waviness alone

has smaller height variations than the roughness.

7. Discussion

With the simulation approach we are able to analyze the

influence of microstructure features on the absorption

corrections in symmetric diffraction geometry. Simulations for

the triangular models in Fig. 12 show that the magnitude of
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Figure 14
Comparison between the absorption corrections for (a) rough and (b) wavy sample surfaces created by mapping a 2D image of pseudo-random Perlin
noise to different Rpv values. All modeled samples were infinitely thick (�t� 1) and had a voxel edge length of 5 � 10� 3. The solid lines through the data
points serve as a guide to the eye. The lateral distribution of material heavily influences the resulting absorption corrections. While the rough surfaces
show minimal corrections, the wavy surfaces exhibit a strong angular dependency and a significantly larger deviation from unity.

Figure 15
Model and resulting absorption correction created by the superposition
of two images of Perlin noise with different gradient grids. The finer
gradient grid has a node distance of �ln = 0.2 and �Rpv = 0.5 while the
long-range grid has a node distance of �ln = 2 and Rpv = 0.2. The voxel
size of the model is �d = 0.01. The absorption correction of the combined
surface shows features observed for the purely rough and purely wavy
surface.



height variations in the surface of a sample alone do not define

the magnitude of the resulting absorption corrections. Instead,

the combination of the vertical scale �h and the lateral scale

�b of the triangles, namely their slope length �s, defines the

value of the minimum in the correction. A surface description

based solely on the vertical scale of the surface along the z axis

of the sample is insufficient to model absorption correctly. This

is further highlighted by simulations for the triangular surfaces

in Fig. 13, which all have the same peak-to-valley distance

�Rpv = �h = 0.25, yet show significant differences in their

simulated absorption corrections when the lateral extent of

the triangle base changes. For these triangular models the

average distance to the mean height Ra and the material

fraction per depth is per definition the same as well (see inset

in Fig. 13).

Harrison & Paskin (1964) describe the absorption effect

with the correlation of the X-ray paths in and out of the

sample. There is no absorption correction if the paths are

entirely uncorrelated. On the compact samples analyzed here,

the degree of correlation between the X-ray paths in and out

of the sample is strongly influenced by the lateral material

distribution. If the height varies on a lateral scale much

smaller than the absorption length �� 1 the individual paths in

and out of the sample have very little correlation. Conse-

quently, the sample models with purely short-range roughness

in Fig. 14(a) show small correction terms, which are almost

constant over much of the angular range, at least relative to

the precision of intensity measurements in powder diffraction.

Any correction that shows no or a very weak angular

dependence in the range of a measurement is indistinguish-

able from a scaling factor and does not change the relative

intensity of measured Bragg reflections. On the other hand, on

wavy surfaces the lateral scale of height variation approaches

or exceeds �� 1 and thus the X-ray paths in and out are

increasingly more correlated. As shown in Fig. 14(b), the

surfaces exhibiting pure long-range waviness show signifi-

cantly larger corrections and a stronger angular dependence

than the surfaces with short-range roughness alone. This effect

is also observable for the periodically modulated triangular

surfaces (Fig. 13).

The correlations between the incoming and outgoing X-ray

path also explain the angular dependency of the correction.

For a sample without pores and a surface with pronounced

waviness, the paths in and out of the sample are less correlated

the higher the incident and diffracted angle � becomes, leading

to the asymptotic approximation of the correction to unity.

The closer incident and diffracted angles are to � = 90�, the

smaller the distance between the entry and exit point of the

X-ray on the surface becomes, meaning the X-ray experiences

less of the lateral height variation. At � = 90� the X-rays probe

a locally ‘flat’ surface independent of surface modulation.

Conversely, the smaller the incident and diffracted angle

become, the larger the distance between the entry and exit

point of the X-ray, meaning the height variation on a longer

scale becomes relevant for the absorption effect. Approaching

the limit of vanishingly small height variations �Rpv! 0 over

increasingly large lateral distances �ln ! 1, the angular

range in which the correction differs from unity will become

insignificantly small, as the sample surface approaches an

ideal, flat surface [Fig. 14(b), �Rpv = 0.1].

Theoretically, waviness on a lateral scale ��� 1 has no

direct influence on the absorption correction. If the path

through the sample becomes large enough, basically all

intensity is fully absorbed before the X-rays leave the sample.

In this case, the correlation between the path in and out is

irrelevant for the absorption correction, since these X-rays do

not contribute to the total measured intensity. However, it

needs to be noted that large-scale waviness may very well also

lead to correlations on the scale of the attenuation length,

which will have an influence on the absorption correction.

In symmetric diffraction measurements, a pronounced

minimum in the absorption is observed, when the surface

exhibits holes with dimensions in the order of magnitude of

the attenuation length. These holes provide paths for X-rays

to reach points in the depth of the sample surface from where

they are significantly absorbed on their way out. When inci-

dent and diffracted angles get large enough for X-rays to be

scattered in these holes and leave the sample again, the scat-

tered intensity increases. Before that point the observed

intensity decreases, since with increasing incident angle more

X-rays reach depths out of which they cannot leave again,

effectively leading to the observed minimum. The visualiza-

tion of the distribution of the effective scattering volume for

the rectangular surface in Fig. 11 shows this effect (an

animated version can be found in the supporting information).

The corrections Ca for surfaces with �Rpv � 0.5 in Fig. 14(b)

also show a minimum, which stems from both the lateral and

vertical scale being in the order of magnitude of the

attenuation length. It is reasonable to assume that such

surfaces may result from powders which have particles with

mean cord lengths >�� 1. On the rough surfaces the same

effect can be observed to a smaller degree at high angles in

Fig. 14(a) for the surface with �Rpv = 1. Due to the large Rpv

the holes become large enough as well, even for short-range

roughness.

A surface with combined roughness and waviness shows a

combination of features in its absorption correction as they

are observed for purely rough and purely wavy surfaces. As

seen in Fig. 15, the correction on the combined surface

increases at low angles less than on the purely wavy surface.

The local roughness damps the effect of the waviness.

We can qualitatively compare the absorption corrections

obtained with the simulations with earlier published correc-

tions determined experimentally with both XRF and XRD

measurements. Because the energy of X-rays typically changes

in XRF experiments, the attenuation of the X-rays on their

way in and out of the sample changes as well. While the

simulation in its current state is not designed to work with

different attenuation coefficients for the path in and out of the

sample, we believe qualitative comparison between correc-

tions obtained from XRF measurements and the simulated

corrections can still be made.

The simulated absorption corrections on the surface with

superimposed roughness and waviness qualitatively agree well
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with the corrections observed in XRF measurements by

Paakkari & Suortti (1968). Suortti (1972) further investigated

the absorption effect in XRF measurements and separated his

resulting corrections into an angle-dependent part originating

from surface roughness and a constant part originating from

porosity. Later, Hermann & Ermrich (1987) derived an

analytical absorption correction based on a statistical model

with the same separation of porosity and roughness effect and

applied it successfully to Suortti’s data. We observe both the

constant effect ascribed to porosity and angle-dependent

effect attributed to the surface for sample models without

porosity. In the simulated corrections, the features stem from

roughness and waviness, respectively, revealing the lateral

scale of height variations as the essential parameter to

differentiate both effects.

The data measured by Trucano & Batterman (1970) in

scattering experiments show a minimum in an angular range

between 20� and 50�, similar to the corrections calculated by

Borie (1981) for a triangular surface. The simulated absorp-

tion correction for the pseudo-random Perlin surface with

both lateral and vertical scale in the order of magnitude of the

attenuation length [Fig. 14(b)] most closely resembles those

corrections, which is reasonable since Trucano & Batterman

(1970) analyzed spherical glass particles with diameters �D

� 1. A similar minimum is present in the analytical correction

by Hwang & Houska (1988), who used a statistical model to

describe the lateral distribution of material along the surface

to derive their correction. With this approach they were able

to describe their experimental XRD data. Pitschke et al.

(1993) measured scattered intensities in XRD experiments on

strongly absorbing tungsten carbide and YBa2Cu3O7 powders

prepared by sedimentation in ethanol. The resulting correc-

tions show a strong angular dependency over all of the angular

range and reach a minimal value of 0.4 in the case of

YBa2Cu3O7. Following the trend observable in the simulations

of the pseudo-random Perlin surfaces in Fig. 14, these

measured absorption effects point to a sample surface with

significant waviness and roughness on a scale > �� 1. Both the

reported mean cord lengths of the particles and the average

surface roughnesses Ra are in the order of magnitude (tung-

sten carbide) or significantly larger (YBa2Cu3O7) than their

respective attenuation lengths, leading to the observed

magnitude and angular dependency of the absorption effect

on these samples. On the other hand, the same powders

prepared with a smooth surface by pressing them against a

polished plate show no significant correction over most of the

angular range of the measurements.

Despite their differences, the wealth of measured absorp-

tion corrections can be reproduced qualitatively with simula-

tions for compact sample models with various surfaces. This

highlights that absorption effects are highly dependent on the

detailed microstructure of the sample.

8. Conclusion

We present a ray-tracing simulation to calculate the influence

of microstructure on scattered intensities in XRD experiments

in reflection geometry. We reduced the ray-tracing procedure

to a sequence of elementary array resampling and multi-

plication steps, enabling the numerical computation of

absorption corrections for arbitrarily complex structures.

Considering the attenuation within individual voxels analyti-

cally makes the rasterization of the microstructure the limiting

factor for the precision of the result. This allows the use of

lower resolutions to model larger microstructure features on

larger samples. The simulations can be carried out on

conventional hardware in reasonable times. Furthermore, the

calculation of the effective scattering volume per voxel

enables the user to visualize the contribution of each voxel to

the total scattering volume, giving insight into the origin of the

scattered intensity. The simulation is applicable to non-

symmetrical geometries as there are no restrictions with

regard to incident and diffracted angles.

The simulations allowed us to numerically calculate

absorption corrections not only for various simple periodic 2D

surface modulations, but also for 3D models exhibiting

pseudo-random surfaces with varying vertical and lateral

extent of their material distribution. The simulations demon-

strate that for compact samples the lateral scale of the material

distribution in the surface relative to the attenuation length

�� 1 is essential for the angular dependency and magnitude of

the resulting absorption correction. Generally, absorption

corrections become significant when the lateral scale of the

microstructure approaches or exceeds the attenuation length.

Surface descriptions based solely on height variations normal

to the surface are insufficient to include all aspects of

absorption effects.

The flexibility of simulating arbitrary sample models also

allows the analysis of porous samples in the future. Further-

more, absorption corrections for real samples can be calcu-

lated after their microstructure has been analyzed

experimentally with e.g. an atomic force microscope or an

optical profilometer.
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