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The atomic pair distribution function (PDF) is a real-space representation of the

structure of a material. Experimental PDFs are obtained using a Fourier

transform from total scattering data which may or may not have Bragg

diffraction peaks. The determination of Bragg peak resolution in scattering data

from the fundamental physical parameters of the diffractometer used is well

established, but after the Fourier transform from reciprocal to direct space,

these contributions are harder to identify. Starting from an existing definition of

the resolution function of large-area detectors for X-ray diffraction, this

approach is expanded into direct space. The effect of instrumental parameters

on PDF peak resolution is developed mathematically, then studied with

modelling and comparison with experimental PDFs of LaB6 from measurements

made in different-sized capillaries.

1. Introduction

The instrument resolution function – a fundamental char-

acteristic of any diffractometer – describes the peak profile

measured and its angular dependence, due to the specific

geometry and conditions of that particular diffractometer. It is

routinely characterized with standard, highly crystalline

samples and, in many cases, it can also be calculated theore-

tically (Caglioti et al., 1958; Gozzo et al., 2006) or modelled

with ray-tracing simulations (Rebuffi et al., 2017). Any

diffraction pattern is then a convolution of the scattering

function from the sample and the instrumental resolution

function for the diffractometer on which it was measured. The

accurate decoupling of these contributions is important for

structural and microstructural refinement from Rietveld and

pair distribution function (PDF) analyses of powder diffrac-

tion data.

With the benefits of low noise, high dynamic range, high

efficiency of detection and fast read-out, experimental setups

based on large-area photon-counting detectors with thick Si or

CdTe sensors are extensively used for total scattering

measurements at synchrotron sources and are becoming more

common in the home laboratories. The separation of sample

and instrument contributions to the resulting data is

straightforward in reciprocal space and the known resolution

function can be used (Neder & Proffen, 2020). Analysis of

interatomic distances in direct space, on the other hand,

requires a Fourier transform of the diffraction intensity,

resulting in the PDF. The Fourier transform of the diffraction

pattern gives a product of the Fourier transforms of the

resolution and scattering functions. The simplest possible

instrumental resolution function is a single Gaussian broad-
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ening, which is trivial to model as its Fourier transform results

in an envelope function that exponentially decays with

interatomic distance. However, the situation becomes more

complicated if we have to account for the Q dependence of the

parameters of the resolution function, in particular for the

change of full width at half-maximum (FWHM) as a function

of the scattering vector.

A simple Gaussian Q-dependent resolution function has

been proposed for which an analytical solution to the real-

space data has been found. The FWHM of the diffraction

peaks, HG ¼ 2 2 ln 2ð Þ1=2�G, depends on Q as

�2
G ¼ �

2
0 þ �

2Q2; ð1Þ

where �2
0 is the variance of the Q-independent broadening

component summing up instrumental and sample-related

contributions and � is a constant encompassing the instru-

mental parameters for a certain diffractometer (Qiu et al.,

2004). This solution was first presented by Thorpe et al. (2002)

and was recently revisited and derived for Lorentzian and

pseudo-Voigt profiles (Beyer et al., 2022), but crucially the

resolution function for a measurement with large-area detec-

tors was recently reported (Chernyshov et al., 2021), and has a

very different Q dependence to that in equation (1).

Here we consider the effect of the resolution function for

such experimental setups on the PDF data. First, we re-

express the resolution function as a function of scattering

vector and compare it with a standard diffraction pattern

collected on a large-area detector. Further analysis is done

within the theoretical scheme proposed by Thorpe et al.

(2002). Second, we compare diffraction patterns measured

with a powdered LaB6 standard using different sets of

instrument parameters. Finally, we evaluate corresponding

PDF data and illustrate the effect of the resolution function

numerically.

2. Theory

The instrumental broadening of diffraction lines for a large 2D

detector oriented normal to the beam is derived by Cherny-

shov et al. (2021). The square of the instrumental FWHM as a

function of diffraction angle, 2�, is given by

H2
2� ¼ A cos4 2�þ B cos2 2�þ C: ð2Þ
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Figure 1
Calculated resolution functions for changing experimental parameters of a simulated diffraction experiment. (a) shows the effects on change in detector
sensitive layer thickness (t) with a capillary size (c) of 0.1 mm and a sample-to-detector distance (D) of 100 mm. (b) varies c with t = 0.1 mm and D =
100 mm. (c) showcases D with c = 0.1 mm and t = 0.1 mm. Subplot (d) presents a calculated resolution function given a typical experimental setup with a
1.0 mm capillary situated 200 mm from a detector with a sensitive layer thickness of 1.0 mm.



Hereinafter we assume the angular uncertainty is the variance

of a normal distribution. The coefficients in equation (2) are

defined by the experimental parameters as follows:

A ¼
2 ln 2

D2
p2 � 2t2 � c2
� �

;B ¼
2 ln 2

D2
2t2 þ 2c2
� �

;

C ¼ 2�2ln 2; ð3Þ

where D is the sample-to-detector distance, p is the pixel size

(or point spread function, if any) of the detector, t is the

thickness of the detector’s sensitive layer, c is the size of the

sample (e.g. the diameter of the capillary with a powder

sample) and � denotes the angular divergence of the scattered

beam.

2.1. The resolution function in Q space

Consider a Gaussian centred at Q0 in Q space:

RðQ;Q0Þ ¼
1

2�ð�QÞ
2

� �1=2
exp �

ðQ � Q0Þ
2

2ð�QÞ
2

� �

; ð4Þ

where (�Q) is the variance. The angular uncertainty of the

corresponding Bragg angle reads (Chernyshov et al., 2021)

��ð Þ
2
¼

1

16D2
cos4 2�ðp2 � 2t2 � c2Þ þ cos2 2�ð2c2 þ 2t2Þ þD2�2
� �

:

ð5Þ

Given that

Q ¼
4� sin �

�
ð6Þ

and

cosð2�Þ ¼ 1 � 2 sin2 � ¼ 1 �
�2

8�2
Q2; ð7Þ

we can write

�Qð Þ
2
¼

16�2

�2
cos2 �ð��Þ

2
¼

16�2

�2
1 �

�2

16�2
Q2

� �

ð��Þ
2
: ð8Þ

With � ¼ �2=ð�2D2Þ and � ¼ �2=ð16�2Þ the variance of the

angular resolution function becomes

ð�QÞ
2
¼ �

�
ð1 � 2�Q2Þ

4
ðp2 � 2t2 � c2Þ

þ ð1 � 2�Q2Þ
2
ð2c2 þ 2t2Þ þD2�2

�
1 � �Q2
� �

: ð9Þ

Alternatively, the variance as a function of Q can be written as

the tenth-order even polynomial function:

ð�QÞ
2
¼
P

anQn; ð10Þ

with the coefficients expressed via components of the resolu-

tion associated with sample size, beam divergence, sample-to-

detector distance and detector parameters – pixel size and

thickness of the sensitive layer (see Appendix A).

The effect of some instrumental parameters on (�Q)2 is

shown in Fig. 1. It is clear that the default assumption from

equation (1) does not hold for measurements with a large-area

detector set normal to the incoming beam. At Q = 0, (�Q)2 =

a0 = �(p2 + c2 + D2�2). There is also a high-angle/high-Q limit

of (�Q)2 = 0 when the scattered X-ray is normal to the

incoming beam and parallel to the detector surface. Therefore,

Qmax < ½2ð2Þ1=2��=� and 2�< ð�=2Þ.

2.2. The resolution function in PDF r space

Following the considerations suggested by Billinge &

Thorpe (2002), we can derive the effect of instrumental

broadening on the PDF. Assuming the Gaussian approxima-

tion holds, the observed radial PDF, Gc(r), can be expressed

using the following convolution:

GcðrÞ ¼
1

2�

Z

Gðr0ÞCðr; r0Þ dr0; ð11Þ

where G(r0) is the actual radial PDF and C(r, r0) is a trans-

mission function, i.e. the real-space instrumental contribution.

C(r, r0) can be expressed as the Fourier transform of the

resolution function in Q space [equation (4)]:

Cðr; r0Þ ¼

Z Z

expðiQrÞ expðiQ0r0ÞRðQ;Q0Þ dQ0 dQ;

¼
1

2�

Z

exp½iQðr � r0Þ� exp½� r2ð�QÞ
2
� dQ: ð12Þ

While there is no analytical solution, this integral can be

evaluated numerically with the polynomial expression for

variance [equation (10)] and the coefficients listed in

Appendix A. Equation (12) can be written in the following

form:

Cðr; r0Þ

¼
1

2�

Z

exp½iQðr � r0Þ�
Yn¼10

n¼0

expð� r2anQnÞ dQ

¼
1

2�
expð� r2a0Þ

Z

exp½iQðr � r0Þ�
Yn¼10

n¼2

expð� r2anQnÞ dQ:

ð13Þ

The exponent in front of the integral is a damping function

that suppresses the PDF at high r. Note that the damping

parameter is a function of various experimental parameters:

a0 ¼
�2

�2D2
p2 þ c2 þD2�2
� �

: ð14Þ

The integral expresses the position-dependent broadening of

PDF features, while the damping parameter, �2
0 ¼ a0, sets a

limit on the size of the structural correlations or structural

coherence, i.e. particle size, that can be probed for certain

experimental conditions. Using an intensity threshold of

I=Imax > 0:018 [expð� r2
maxa0Þ ¼ expð� 4Þ] to denote the decay

of signal to only noise defines the maximum interatomic

distance that is measurable:

rmax ¼
2

a0ð Þ
1=2
¼

2�D

�

1

p2 þ c2 þD2�2ð Þ
1=2
: ð15Þ

For a detector with size, V, in any direction perpendicular to

the incoming beam (the aperture of the detector), the

detectable scattering vectors are �Qmax, where
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Qmax ¼
4�

�
sin

1

2
arctan

V

D

� �� �

: ð16Þ

Therefore, for a detector with fixed position and aperture, we

can define the relation

rmaxQmax ¼ 8D
sin 1

2 arctan V
D

� �� �

p2 þ c2 þD2�2ð Þ
1=2
: ð17Þ

For a typical detector with vertical size 300 mm and pixel size

0.172 mm, positioned 150 mm from the sample, a wavelength

of 0.3 Å would correspond to a Qmax of 22 Å� 1.

Given a capillary diameter and beam size of 0.3 mm and

neglecting beam divergence, one gets rmax = 83 Å; therefore,

for the given experimental conditions, it is not possible to

reliably determine particle sizes larger than 8 nm. Increasing

the capillary and beam size to 0.7 mm decreases rmax to 4 nm.

Obviously, a non-zero beam divergence will further reduce

rmax, and an increase in accuracy (signal–noise ratio) will lead

to higher rmax.

The shape and width of PDF features are given by the

integral in equation (13). It is easy to see that, in contrast to

the resolution expected by default [equation (1)], the decrease

in width of diffraction lines with Q does not result in a

Gaussian as derived by Thorpe et al. (2002). The function
Q

expð� r2anQnÞ in equation (13) is now limited by Qmax, and

the corresponding Fourier transform may be approximated by

a sinc(rQmax) function, at least for small r0. We investigate the

broadening by numerical calculation of the resolution function

as a function of r for a set of r0 values and find that it is rather

insensitive to the actual shape of the resolution function. This

conjecture is illustrated in Appendix B; it implies that there is

effectively no instrumental position-dependent broadening in

the PDF pattern.

We have therefore split instrumental broadening of Bragg

lines into two components: a term that leads to a decay of the

intensity of the PDF pattern with interatomic distance

[equation (14)], and a Q-dependent part that results in a

broadening of PDF peaks. The first component sets a limita-

tion on the maximal size of coherent regions [equation (14)].

The second component defines instrumental contribution in

the width of PDF peaks, which is predominantly defined by

1=Qmax. For the majority of synchrotron experiments, the

detector and beam size are fixed while the sample-to-detector

distance and X-ray wavelength may be varied; characteristic

dependencies of rmax and Qmax are shown in Appendix C.

The above derivations assume a high degree of mono-

chromatization of the incoming beam. However, it becomes

common practice to increase the bandwidth �� to have higher

research papers

Acta Cryst. (2024). A80, 358–366 Dmitry Chernyshov et al. � Instrumental broadening and the radial PDF 361

Figure 2
Experimental PDF patterns (normalized to 1) of LaB6 measured in 0.1,
0.2, 0.3, 0.4, 0.5 and 0.7 mm capillaries plotted to (a) 20 Å, (b) 125–150 Å
and (c) 100 Å.

Figure 3
(a) Qdamp with a quadratic fit and (b) U atomic displacement parameters
refined for the PDF patterns for each capillary size.



intensity, which adds the following term to equation (5)

(Chernyshov et al., 2021):

��ð Þ
2
�¼

1 � cosð2�Þ

1þ cosð2�Þ

��

�
¼

�2

16�2

Q2

1 � �2

16�2 Q2

��

�
: ð18Þ

The corresponding contribution in the line broadening in Q

space, as follows from equation (8), is written

�Qð Þ
2
�¼

��

�
Q2: ð19Þ

Therefore, the effect of increased bandwidth is an increase of

the a2 coefficient [see equation (10) and Appendix A], that

affects the width of PDF features but does not reduce the

maximal size of a structurally coherent region. Since the

bandwidth contribution is always positive, in contrast to the

other coefficients in the series equation (10), we can consider

the final broadening as a convolution of a Gaussian [�ð��=�Þ]

with a sinc function (Appendix B). Therefore, the effect of a

broad bandwidth will dominate for measurements done up to

very high Q.

We conclude the theoretical part with a comment on the

geometry where the detector is tilted by an angle � to cover a

larger angular range. The corresponding expression for the

resolution as a function of diffraction angle is derived by

Chernyshov et al. (2021):

H2 ¼ Ax4 þ Bx2 þ C þM
1 � x

1þ x
; ð20Þ

where x = cosð2�Þ or x = cosð2� � �Þ and M =

½4ð2 ln 2Þ1=2ð��=�Þ�2, and the last term takes energy bandwidth

into account [equation (18)]. For such a geometry the reso-

lution function in Q space can be evaluated numerically.

3. Experimental illustration of resolution effects

Powdered LaB6 samples were measured at the BM31 beam-

line (Swiss–Norwegian Beamlines at the European Synchro-

tron Radiation Facility, Grenoble, France) using a MAR345

2D detector with a wavelength of 0.270793 Å, at a distance of

181 mm and a maximum Q of 23 Å� 1. The sample was loaded

in various sizes of glass capillary (0.1, 0.2, 0.3, 0.4, 0.5 and

0.7 mm in diameter). Corresponding backgrounds were

measured using the same size capillaries and were subtracted

from the monitor-normalized and integrated patterns. Cali-

bration of the instrument and integration of images were done

using pyFAI (Ashiotis et al., 2015). The FWHMs of individual

Bragg lines as a function of Q are given in Appendix E and are

rather scattered at high Q due to strong overlap of Bragg lines;

however, the trend corresponds well to the expected instru-

mental resolution [equations (2), (10), see also Fig. 1].

PDFgetX3 was used to convert the 1D total scattering

patterns to total scattering structure functions [S(Q) and

reduced form, F(Q)] and PDF [G(r)] (Juhás et al., 2013). The

PDFs are shown in Fig. 2 with different r ranges (normalized

to the maximum intensity). With 0.7 mm capillaries the signal

decays to 2% of the maximum at 120 Å {converting the

pattern to an approximate g(r) function, G(r) = 4��0r[g(r) �

1], the signal decays to 2% at 75 Å}. The lattice parameter,

appropriate atomic positions, damping and atomic displace-

ment parameters were refined against these PDFs using

Diffpy-CMI (Juhás et al., 2015). The damping was refined

using a combined Gaussian–Lorentzian profile as described by

Beyer et al. (2022). The Lorentzian component for the 0.1 mm

capillary refined to 0.007, and this fixed value was used for all

the other refinements, while the Gaussian component was

freely refined. The results of the refinements are shown in

Appendix D, Figs. 7–9, with the Rp values shown in Table 1.

The refined Qdamp and U atomic displacement parameters

are shown in Fig. 3. The largest impact of capillary size is,

predictably, on Qdamp, while peak broadening is much less

affected, as shown by the smaller effect on the atomic

displacement parameters. Although the refined value for U33

for boron appears to reduce with capillary size (0.025 to 0.022

going from the 0.1 to 0.7 mm capillaries), this trend is within

the error of the refinement. Qdamp as a function of capillary

size was fitted with a quadratic function, the result of which

was Qdamp = 0.0133 + 0.0125c2, in agreement with equation

(14). The small impact of capillary size on the broadening in

total scattering patterns can also be seen visually in Fig. 2(a)

by observing that in the range 0–20 Å in r, the PDF profiles

appear to match almost exactly.

4. Conclusions

We considered the instrumental line broadening for the case

when powder diffraction of monochromatic radiation detected

by a large-area detector is used for analysis of the PDF. We

have shown that for a detector set normal to the incident

beam, the broadening of PDF peaks predominantly depends

on the maximal Q value reached in the experiment and to a

much lesser extent on the instrumental broadening of the

diffraction lines.

We have also derived the instrumental damping of the PDF

signal as a Q-independent contribution to instrumental

broadening defined by sample/beam size, pixel size of the

detector and beam divergence. The overall instrumental

contribution to the width of Bragg lines leads to a decay of

PDF intensity with interatomic radius: thus the broader the

lines in the diffraction pattern, the smaller the particle sizes

that can be analysed by the PDF method. The corresponding

analytical expression is derived and given by equation (14),

with a graphical illustration shown in Appendix C. The prac-

tical importance of the derived results may be better illu-

strated by the following set of experimental parameters: � =

0.2 Å, sample-to-detector distance is 300 mm, Pilatus 2M
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Table 1
Rp values for the PDF refinements for each capillary size.

Capillary size (mm)

0.1 0.2 0.3 0.4 0.5 0.7

Rp 0.11 0.14 0.11 0.12 0.11 0.11



detector with pixel size 0.172 mm and beam/capillary size

0.3 mm. The setup offers Qmax = 33 Å, which seems to be good

for a generic PDF experiment; however the PDF intensity will

be damped down at 5 nm by the instrumental resolution

irrespective of the actual particle sizes. The diffraction

experiment may therefore be planned, from the resolution

point of view, as an optimizing trade-off between the damping

of PDF intensity and the width of PDF peaks.

The analytical expressions derived here are based on a

series of approximations, such as a symmetric Gaussian line

shape, for the sake of simplicity. Experimental data collected

with a set of geometrical conditions confirm the expected

effects of the instrumental broadening. Nevertheless, accurate

numerical simulations with more realistic line shapes are

necessary to improve the estimates presented here.

APPENDIX A

Let us denote � ¼ �2=ð�2D2Þ and � ¼ �2=16�2. The coeffi-

cients in equation (10) are

a0 ¼ � p2 þ c2 þD2�2
� �

ð21Þ

a2 ¼ �� 8t2 � c2 � 9p2 � D2�2
� �

ð22Þ

a4 ¼ 8��2 2p2 � c2 � 3t2
� �

ð23Þ

a6 ¼ 8��3 13t2 þ 6c2 � 7p2
� �

ð24Þ

a8 ¼ 48��4 p2 � 2t2 � c2
� �

ð25Þ

a10 ¼ � 16��5 p2 � 2t2 � c2
� �

: ð26Þ
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Figure 4
Comparison between the different resolution functions described in equations (1) and (10). Left-hand column: the instrumental resolution function
(FWHM broadening as a function of q). Middle column: exponential function in equation (12). Right-hand column: Fourier transform of the exponential
function. Calculations were performed using the following parameters: Qmax = 20 Å� 1, D = 100 mm, �= 0.25 Å, p = 0.172 mm, c = 0.3 mm and t = 0.1 mm.

Figure 5
Experimental instrumental resolution at D = 890 mm, Pilatus2M 1 mm
CdTe detector. Circle markers show the FWHM of diffraction lines of
LaB6, and the grey line shows the model calculation.



APPENDIX B

Fig. 4 shows a comparison between the different resolution

functions described in equations (1) and (10).

APPENDIX C

The experimental resolution function in Q and 2� space is

shown in Fig. 5.

The test measurement was done at the BM31 beamline with

a Pilatus 2M detector with 1 mm of CdTe sensitive layer at

890 mm distance from the sample. The wavelength (0.25 Å),

sample-to-detector distance (890 mm), pixel size (0.172 mm)

and capillary size (0.2 mm) were fixed in the model; the

effective thickness of the sensitive layer, size of the beam and

divergence correction were refined. The beam was focused on

the detector which gives negative divergence correction and a

larger spot at the sample position. The effective thickness

depends on the wavelength (Chernyshov et al., 2021); for the

present case it is 0.38 mm. This value was used to illustrate the

resolution function for a parallel beam reduced to the

diameter of the sample capillary in conditions for PDF

measurements. Two limiting cases and an estimate of rmax are

shown in Fig. 6.

APPENDIX D

The results of the refinements are shown in Figs. 7, 8, 9,

Table 1.
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Figure 6
Calculated instrumental resolution at D = 200 mm, Pilatus2M 1 mm CdTe
detector for small and large capillary sizes. Inset: rmax as a function of
capillary size.

Figure 7
LaB6 refinements for (a) 0.1 and (b) 0.2 mm capillaries.

Figure 8
LaB6 refinements for (a) 0.3 and (b) 0.4 mm capillaries.



APPENDIX E

Validation of theory through experimental measurements of

LaB6 with different capillary sizes

Experimental X-ray diffraction data collected on BM31 for

0.1–0.7 mm internal diameter capillaries were fitted using

Python and the Scipy module’s curve fitting. Each peak was

fitted with an independent Gaussian function (refined posi-

tion, intensity, FWHM, background) to obtain the FWHM

peak height. The peaks were fitted from the midpoint of the

previous peak to the midpoint of the next peak. A fifth-order

Chebyshev polynomial fitted to the background in TOPAS V6
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Figure 9
LaB6 refinements for (a) 0.5 and (b) 0.7 mm capillaries.

Figure 10
FWHM of LaB6 peaks for capillary sizes 0.1 to 0.7 mm from Gaussian
peak fitting, filtering out peaks with low intensity. Each data set was
filtered to a linear regression to clarify the trends at high Q.

Figure 11
Observed (black), calculated (red) and difference (green) plots for the
fitting of the X-ray diffraction data from the 0.1 mm capillary.



was subtracted from the data prior to peak fitting. The

FWHMs plotted against Q in Fig. 8 clearly resemble the

calculated functions in Fig. 1 (capillary size). The data shown

are filtered to show the points where the relative peak

intensity is 5% or more above the background, as the low

signal levels at high Q values led to a large number of outliers

which obscured the overall trends. The final fits for the 0.1 mm

capillary are shown in Fig. 9. The fitting method assumes the

background between peaks to be linear, and despite the initial

background correction this leads to some artefacts in the

difference plot at low Q. The effect of these on the FWHM

values from the Gaussian fits is negligible (see Figs. 10, 11).
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