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The superstructure spots that appear in diffraction patterns of tilted perovskites

are well documented and easily calculated using crystallographic software. Here,

by considering a distortion mode as a perturbation of the prototype perovskite

structure, it is shown how the structure-factor equation yields Boolean condi-

tions for the presence of superstructure reflections. This approach may have

some advantages for the analysis of electron diffraction patterns of perovskites.

1. Introduction

Conditions for the appearance of superstructure reflections in

diffraction from ABO3 perovskites with BO6 octahedral tilting

were outlined almost exactly 50 years ago in the seminal work

of Glazer (1972, 1975). In X-ray and neutron diffraction,

where many diffracted beams are routinely collected over a

wide range of crystal orientations, these reflections, and

changes in unit-cell dimensions, may be used to determine the

space group, extinction conditions and thus the crystal struc-

ture. However, in transmission electron microscopy (TEM)

and electron diffraction (ED), excluding 3D-ED methods

(Gemmi et al., 2019), it is usual to examine a few low-index

zone axes in individual crystals or domains, which provides

only partial data. Nevertheless, this can provide crucial

information that is sufficient to distinguish between alter-

native structures (Woodward & Reaney, 2005). In addition,

the sensitivity of electron scattering to low atomic number (i.e.

oxygen) atoms and the ability to probe nanoscale regions gives

ED an important role in the characterization of perovskite

oxides.

With incomplete knowledge of the 3D reciprocal lattice and

space group, in ED it is common to work in the reference

frame of the prototype perovskite structure while using the

term ‘pseudo-cubic’ to acknowledge that this is not actually a

correct description of the structure. In the pseudo-cubic

reference frame, superstructure reflections that result from

larger periods in direct space appear at fractional coordinates

in reciprocal space, i.e. doubled lattice translations produced

by octahedral tilting give reflections at half-order positions.

The different patterns of superstructure reflections produced

by different Glazer tilt systems have been determined by

inspecting simulations (Woodward & Reaney, 2005) for some

low-index ED patterns. Here, we revisit this question and

derive general equations for superstructure reflections. The

emphasis on tilt system (or other distortion mode), rather than

space group, avoids the need to change reference frame

according to different choices of unit cell and the conversion

of Miller indices describing the zone axis, reciprocal-lattice

vectors, and systematic absences this entails. The approach is

therefore convenient when analysing diffraction patterns of
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perovskites exhibiting different distortion modes, and

provides a result for any zone axis.

2. Calculation

Ignoring thermal factors, the structure-factor equation that

gives the complex amplitude of a diffracted beam g in a crystal

with a static distortion mode can be written

Fg ¼
Pn

j¼1

f ðjÞg exp 2�ig � ðrðjÞ þ d
ðjÞ
Þ

� �
; ð1Þ

where the sum is taken over all j atoms in the unit cell, each

having atomic scattering factor f ðjÞg , fractional coordinates rðjÞ

in the prototype structure, and static displacement from these

prototype coordinates (due to a distortion mode, such as an

oxygen octahedral tilt system) dðjÞ.

Here, we are not interested in the precise value of Fg for a

superstructure reflection. Rather, our main concern is whether

a distortion mode produces a superstructure reflection or not.

The answer to this question is simply that a reflection will be

present when the result of equation (1) is not exactly zero and,

as is shown below, this can be determined most easily by

allowing dðjÞ to be arbitrarily small. This approach also means

that any second-order effects (e.g. octahedral distortions) can

be neglected. Using the approximation e(a+b) = eaeb = ea(1 + b)

for small b, and noting that the structure factor for super-

structure reflections in the prototype structure is precisely

zero, the structure factor of a superstructure reflection with

infinitesimal dðjÞ is

Fg ¼
Pn

j¼1

f ðjÞg 2�ig � d
ðjÞ

exp 2�ig � rðjÞ
� �

: ð2Þ

On first sight, equation (2) does not appear to be much more

informative than equation (1), but further simplification can

be obtained, as follows.

We choose a unit cell that is twice the size of the prototype

in all three dimensions, which is large enough to be a unit cell

for any Glazer octahedral tilting pattern (although it will not

generally correspond to the fundamental unit cell of the

distorted structure). In this reference frame, superstructure

reflections have integer Miller indices with at least one odd

index, while reflections of the prototype structure have all-

even indices (i.e. integer indices in the pseudo-cubic frame).

This expanded cell is eight times the size of the prototype cell

and has 24 oxygen atoms with coordinates given in Table 1.

Here, for reasons that will shortly become apparent, we write

the oxygen coordinates ri, which all have positions that are

multiples of a quarter of the lattice parameter of the unit cell,

with an integer form si = 4ri. The exponential term can then be

written

exp ð2�ig � rðjÞÞ

¼ exp ðs1g1�i=2Þ exp ðs2g2�i=2Þ exp ðs3g3�i=2Þ

¼ As1 Bs2 Cs3 ; ð3Þ

using the substitution A ¼ exp ðg1�i=2Þ, B ¼ exp ðg2�i=2Þ and

C ¼ exp ðg3�i=2Þ. The Miller indices gi are integers and thus
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Table 1
Coordinates of the 24 oxygen atoms in the expanded unit cell used to
describe tilted perovskites (Fig. 1, written as integer multiples of 1/4, e.g.
rO1 ¼ ½0; 1=4; 1=4�.

Atom s1 s2 s3 Atom s1 s2 s3

O1 1 0 1 O13 1 2 1
O2 1 0 3 O14 1 2 3

O3 3 0 1 O15 3 2 1
O4 3 0 3 O16 3 2 3
O5 0 1 1 O17 0 3 1
O6 0 1 3 O18 0 3 3
O7 1 1 0 O19 1 3 0
O8 1 1 2 O20 3 3 2
O9 2 1 1 O21 2 3 1

O10 2 1 3 O22 2 3 3
O11 3 1 0 O23 3 3 0
O12 3 1 2 O24 3 3 2

Figure 1
Displacements of oxygen atoms due to a BO6 octahedral rotation about
the c axis. Labels correspond to Table 1; red arrows indicate displace-
ments dðjÞ listed in Table 2.

Table 2
Oxygen-atom displacements produced by the a0a0c+ tilt system shown in
Fig. 1.

Displacements in the a0a0c� tilt system are similar, except O2, O4, O6, O10,
O14, O16, O18 and O22 whose displacements are reversed.

Atom �1 �2 �3 Atom �1 �2 �3

O1 � � 0 0 O13 � 0 0
O2 � � 0 0 O14 � 0 0
O3 � 0 0 O15 � � 0 0

O4 � 0 0 O16 � � 0 0
O5 0 � 0 O17 0 � � 0
O6 0 � 0 O18 0 � � 0
O7 0 0 0 O19 0 0 0
O8 0 0 0 O20 0 0 0
O9 0 � � 0 O21 0 � 0
O10 0 � � 0 O22 0 � 0

O11 0 0 0 O23 0 0 0
O12 0 0 0 O24 0 0 0



the terms A, B and C take values of� 1 for even gi and� i for

odd gi.

We are now ready to consider specific distortion modes. Fig.

1 shows the direction of (infinitesimal) oxygen-atom displa-

cements for in-phase octahedral rotations about c, a0a0c+ in

Glazer notation, which are listed in Table 2. Using equation

(3) and substituting into equation (2) we obtain

Fg

2�ifg�
¼ � g1AC � g1AC3 þ g1A3C þ g1A3C3

þ g2BC þ g2BC3 � g2A2BC � g2A2BC3

þ g1AB2C þ g1AB2C3 � g1A3B2C � g1A3B2C3

� g2B3C � g2B3C3 þ g2A2B3C þ g2A2B3C3; ð4Þ

which nicely reduces to

Fg

2�ifg�
¼ C g2B � g1Að Þ 1 � A2

� �
1 � B2
� �

1þ C2
� �

: ð5Þ

This equation can be interpreted as a set of Boolean condi-

tions, all of which must be satisfied for a superstructure

reflection to exist. Thus, since A = �1 for even g1 and A = �i

for odd g1, (1 � A2) is only non-zero, and a superstructure

reflection will only be present, when the first index of the

reflection, g1, is odd. Similarly, (1 + C2) is only non-zero for

even g3 and therefore equation (5) indicates that super-

structure reflections of the a0a0c+ tilt system must have the

form odd–odd–even in the frame of the doubled cell. As for

the other two terms in equation (5), C ¼ exp ðg3�i=2Þ is never

zero, while (g2B � g1A) = 0 when |g1| = |g2|. We thus obtain the

result that superstructure reflections occur with pseudo-cubic

indices 1
2

ooe, |g1| 6¼ |g2|. The latter condition describes the

systematic absences that result from the b-glide plane in the

space group of the P4/mbm a0a0c+ structure.

A similar procedure can be performed for the a0a0c� tilt

system, in which the displacements of oxygen atoms with even-

numbered labels in Table 2 are reversed, with the result

Fg

2�ifg�
¼ C g2B � g1Að Þ 1 � A2

� �
1 � B2
� �

1 � C2
� �

; ð6Þ

indicating that superstructure reflections must have pseudo-

cubic form 1
2

ooo with the same systematic absences, this time

from the c glide in the space group I4/mcm of the a0a0c�

structure.

Other distortion modes, such as antiferrodistortive cation

displacements, can also be considered in a similar manner

using their coordinates and displacements.

A particularly elegant aspect of this approach is that rules

for superstructure reflections in structures with oxygen octa-

hedral tilts about multiple axes – or, indeed, multiple distor-

tion modes (e.g. antiferrodistortive displacements, distorted

oxygen octahedra etc.) – can be constructed simply by adding

equations, giving a straightforward and quick method of

calculation. The results are summarized for the 14 crystal-

lographically distinct oxygen octahedral tilt systems (Howard

& Stokes, 1998) in the Appendix.

3. Conclusions

Equations governing the appearance of superstructure spots

resulting from distortion modes in perovskites have been

derived. This may aid the interpretation of ED patterns and

replicates the work of Glazer (1975) and Woodward & Reaney

(2005). The emphasis on distortion mode, rather than space

group, allows the interpretation of ED patterns without the

need to rewrite vectors in real and reciprocal space for

different unit cells.

APPENDIX A

For completeness we compile in Table 3 the conditions

governing the existence of superstructure spots in the pseudo-

cubic reference frame for the 14 crystallographically distinct

Glazer tilt systems as listed by Howard & Stokes (1998). These

may be obtained by adding equations similar to equations (5)

and/or (6) for the appropriate tilt system.

Some general rules become apparent from Table 3. The

rules for in-phase tilting are quite straightforward, with each

tilt system a+, b+, c+ producing its own set of superstructure

spots with pseudo-cubic indices 1
2

eoo, 1
2

oeo, 1
2

ooe with no
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Table 3
Pseudo-cubic superstructure reflections in perovskites with octahedral
tilting.

Miller indices are given in the form g ¼ hkl to allow for concise descriptions of
extinctions.

No. Tilt system Space group Conditions for superstructure spots to exist

1 a+a+a+ Im�3 1
2

ooe; jhj 6¼ jkj; 1
2

oeo; jhj 6¼ jlj;
1
2

eoo; jkj 6¼ jlj

2 a0b+b+ I 4
m

mm 1
2

ooe; jhj 6¼ jkj; 1
2

oeo; jhj 6¼ jlj

3 a0a0c+ P 4
m

bm 1
2

ooe; jhj 6¼ jkj

4 a0a0c� I 4
m

cm 1
2

ooo; jhj 6¼ jkj

5 a0b� b� Imma 1
2

ooo; !ðjhj ¼ jkj ¼ jljÞ; k 6¼ l;

!(h = n, k = �n + 4m, l = �n + 4m),
n, m integers

6 a� a� a� R�3c 1
2

ooo, h 6¼ k and k 6¼ l and l 6¼ h,
!(h = n, k = n + 4m, l = n + 4p),
n, m, p integers

7 a+b+c+ Immm 1
2

ooe; jhj 6¼ jkj; 1
2

oeo; jhj 6¼ jlj; 1
2

eoo; jkj 6¼ jlj

8 a+a+c� P 42

n
mc 1

2
ooo; jhj 6¼ jkj; 1

2
oeo; jhj 6¼ jlj; 1

2
eoo; jkj 6¼ jlj

9 a0b+c� Cmcm 1
2

ooo; jhj 6¼ jkj; 1
2

oeo; jhj 6¼ jlj

10 a+b� b� Pnma 1
2

eoo; jkj 6¼ jlj; 1
2

ooo; !ðjhj ¼ jkj ¼ jljÞ; k 6¼ l;
!(h = n, k = �n + 4m, l = �n + 4m),
n, m integers

11 a0b� c� C 2
m

1
2

ooo; !ðjhj ¼ jkj ¼ jljÞ

12 a� b� b� C 2
c

1
2

ooo; !ðjhj ¼ jkj ¼ jljÞ; k 6¼ l

13 a+b� c� P 21

m
1
2

ooo; !ðjhj ¼ jkj ¼ jljÞ; 1
2

eoo; jkj 6¼ jlj

14 a� b� c� P�1 1
2

ooo; !ðjhj ¼ jkj ¼ jljÞ



dependence on the presence of any other distortions.

Conversely, all antiphase tilt systems produce pseudo-cubic
1
2

ooo superstructure spots, and are only distinguished by their

systematic absences. Furthermore, because in these cases the

type of superstructure reflections is always the same, tilts of

equal magnitude operating about different axes can result in

changes to the set of systematic absences. Accordingly,

systematic absences are most apparent for the a� a� a� system.

This means that determining antiphase tilting systems is less

straightforward than in-phase tilt systems. For investigations

using ED, it may thus be important to explore reciprocal space

in 3D since systematic absences can readily be ‘filled in’ by

double diffraction where the possibility exists, particularly in

the zero-order Laue zone. Access to higher-order Laue zones,

or zone axes where no double diffraction pathways are

present, is generally necessary.

Table 3 shows that reflections of the form 1
2

eeo, 1
2

eoe and
1
2

oee do not result from oxygen octahedral tilting. They may,

however, be produced by antiferrodistortive displacements of

cations. Calculation of extinction rules for these distortion

modes is left as an exercise for the reader.
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