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In powder diffraction, lattice symmetry relaxation causes a peak to split into

several components which are not resolved if the degree of desymmetrization is

small (pseudosymmetry). Here the equations which rule peak splitting are

elaborated for the six minimal symmetry transitions, showing that the resulting

split peaks are generally broader and asymmetric, and suffer an hkl-dependent

displacement with respect to the high-symmetry parent peak. These results will

be of help in Rietveld refinement of pseudosymmetric structures where an exact

interpretation of peak deformation is required.

1. Introduction

In powder diffraction, peak broadening is an important issue

which is increasingly used to get information about grain size

and shape, microstrain and defects (Lutterotti & Scardi, 1990;

Scardi et al., 2018). Each of these phenomena acts in a

different way on line broadening, and we distinguish between

isotropic line broadening, where peak widths are a smooth

function of the diffraction angle 2�, and anisotropic broad-

ening, where peak widths also depend either upon the orien-

tation of the diffraction vector Q (typically associated with

grain shape anisotropy) or upon hkl indices, which gives rise to

fluctuations of the widths between neighbouring peaks in

reciprocal space. The second case is often successfully dealt

with assuming anisotropic microstrain (Popa, 1998; Stephens,

1999), but in a recent Rietveld refinement of a nanocrystalline

material (Boschetti, 2013; Boschetti & Gregorkiewitz, 2023) it

was found that hkl-dependent line broadening may also be

caused by lattice symmetry relaxation which implies symmetry

descent to a subgroup. In such cases, structure-independent

refinement in the subgroup, using the methods of Pawley

(1981) or Le Bail et al. (1988; see also Le Bail, 2005), is

expected to improve fitting and may be used to estimate the

importance of lattice relaxation. However, fitting is here to an

observed powder pattern which may contain many other small

peak deformations which can bias the results. Also, these

techniques rely on whole powder pattern fitting which uses

peak shapes (usually pseudo-Voigtian) that may not corre-

spond at all to the actual situation in a powder pattern (Le

Bail, 2000); thus, they deliver average values for unit-cell and

peak shape parameters which are hard to interpret. We

therefore need an alternative method to exactly control the

peak deformation/displacement, due to lattice relaxation, for

every single peak to be compared with observation.

Boschetti & Gregorkiewitz (2023) drew attention to

(anisotropic) line broadening (ALB) in a particular case
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where desymmetrization from tetragonal to monoclinic was

successful in explaining line widths while a microstrain model,

applied without restrictions, failed to give the correct inter-

pretation. Here we present an in-depth analysis of the effect of

lattice relaxation on the peak shape in the general case of

desymmetrization: it is seen that the transition to lower

symmetry splits a peak into a series of components which

appear, depending on the hkl index, at different displacements

with respect to the parent high-symmetry peak, i.e. beyond

line broadening, lattice relaxation also causes a shift of peak

position and potentially creates asymmetry of the profile.

In the following, the displacements due to lattice relaxation

are established for the possible six different minimal symmetry

transitions, elaborating the specific formulae for each case first

in terms of Q2 (in Section 2.1 and Sections 1.2 to 1.6 in the

supporting information) and then in terms of 2� (Section 3.1).

Multiplied with a Voigtian, the i components can then be

summed for comparison with the observed split peak, as will

be shown below.

2. Possible lattice relaxations and peak splitting

Symmetry relaxations can be rationalized in the frame of

group–subgroup relations where the transformation index i

takes values of 2, 3, 4 or 6 when the transition is to a maximal

subgroup. A single peak in the higher symmetry splits into � i

components in the subgroup symmetry.

Depending on the symmetry, one has to find the multi-

plicities of the reflections in the high- and low-symmetry case,

and then establish the equations for the positions of each

(component) peak. The following scheme outlines this

procedure for the transition from cubic to tetragonal as an

example.

The procedure to identify indices and d spacings of split

peaks and their components is as follows:

(i) Establish the multiplicity M of a general reflection hkl in

the higher unit-cell symmetry (e.g. cubic: M = 48).

(ii) Find a set of equivalent hkl where 1/d2 becomes

different through desymmetrization (e.g. for cubic > tetra-

gonal, c = a + �a, we find: hkl � klh � lhk); this triplet is

equivalent through 3111 in the positive octant which contains

also the triplet khl–lkh–hlk, equivalent through m�110 to the

first. Each octant thus contains a sextuplet and we get M =

6 � 8 = 48.

(iii) Establish the equation 1=d2
hkl ¼ f ðh; aÞ in the higher-

symmetry unit cell.

(iv) Establish the equations 1=d2
hkl ¼ f ðh; aÞ in the lower-

symmetry unit cell, for the i (cubic > tetragonal: i = 3) indices

hkl which are now non-equivalent.

(v) Get the relative position of the peaks created by

desymmetrization, for the general and special reflection

classes. For cubic > tetragonal, for example, we have generally

three �(1/d2) = (1/d2)c � (1/d2)t values which degenerate as

follows (cf. Fig. 2):

2.1. Cubic to tetragonal

For relaxation from cubic to tetragonal we get
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where c = a + �a = a(1 + �a/a) = aD and for �a! 0, equations

(2)–(4) reduce to the cubic formula in equation (1).

The relevant figures for our purpose are the positions of the

split components relative to the cubic parent, i.e. the displa-

cements
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Figure 1
Original position (blue) of a general reflection hkl in the cubic parent cell
and displacements � of the three split positions (red) after relaxation to a
tetragonal cell. Relative intensities reflect the multiplicities which are M =
48 for the cubic and M = 16 for the three tetragonal positions. hkl = 321.



�3 ¼ ðeq: 4Þ � ðeq: 1Þ ¼
h2

a2

1

ð1þ �a=aÞ
2
� 1

� �

’ �
h2

a2
2
�a

a

� �

;

ð7Þ

where the approximation is valid within a relative error of � �

1.5|�a/a|, e.g. for |�a/a| = 0.01(0.1) the amount of displacement

|�| is overestimated by � � 1:5ð15Þ%.

From equations (5)–(7) it is seen that �i scales with the

extent of desymmetrization �a/a and the Miller index. A

graphical presentation is given in Fig. 1.

Fig. 1 has been designed for a general reflection hkl with the

values 321. In this case, the single peak in the cubic symmetry

splits into i = 3 components in the tetragonal system and all

components are displaced from the original cubic position.

Several subsets of this pattern have to be considered for

special reflections:

Here splitting results in triplets, doublets or singlets and

displacements may be nil (� = 0). Some of this is shown in

Fig. 2.

2.2. Remaining five cases of lattice relaxation

The remaining five cases of lattice symmetry relaxation, i.e.

cubic to rhombohedral, hexagonal to orthorhombic/mono-

clinic, tetragonal to orthorhombic, orthorhombic to mono-

clinic, monoclinic to anorthic (triclinic), are developed in the

supporting information (Sections 1.2 to 1.6), following the

same scheme as above for the cubic to tetragonal relaxation.

Some pecularities arise. In all four cases involving an angle

relaxation (�� or ��/�), there appears a barycentre slightly off

the parent peak position, except for hexagonal to ortho-

rhombic/monoclinic. This barycentre does not exist in the two

orthogonal cases (cubic to tetragonal and tetragonal to

orthorhombic). The barycentre reported in Figs. S1, S2 and S5

in the supporting information was designed for ��/� = 1�, but

the distance from the parent peak changes also with hkl and

may increase. This becomes important for special reflection

classes where a single peak may appear at the barycentre and

would be simulated with the parent peak in supergroup

refinement (see Appendix A).

Another curiosity is the fact that in two cases involving

angle relaxation, cubic to rhombohedral and hexagonal to

orthorhombic/monoclinic, the displacements are not restricted

to certain few values as in the other cases, and a much higher

dispersion is observed (Figs. S2 and S3).

3. Comparison with observed peak shape and position

In Section 2 and Sections 1.2 to 1.6 in the supporting infor-

mation, the displacements of the split peak components are

given as line diagrams in terms of Q2, but the experimental

description of a peak implies also shape and width and is

usually given in terms of 2�. The following is concerned with

the calculus of the expected parameters of a non-resolvable

split peak and their comparison with observation.

3.1. The increment in diffraction angle 2h

From Bragg’s equation we get

1

d2
hkl

¼
4 sin2 �hkl

�2
; ð8Þ

which contains the relation between the peak position in terms

of Q2 and the Bragg angle �. For the increments one obtains

�
1

d2

� �

¼
@ð1=d2Þ

@�
�� ¼

4

�2
2 sin � cos � ��� ¼

1

d2

cos �

sin �
�ð2�Þ

ð9Þ

and

�ð2�Þ ¼ tan �
�ð1=d2Þ

ð1=d2Þ
¼ tan � d2 �ð1=d2Þ; ð10Þ

showing that the diffraction angle 2� varies with the relative

variation of Q2 and is proportional to tan �, the same factor

known for peak broadening due to microstrain.

Substituting d2 and �(1/d2) by the expressions developed

above (Section 2 and Sections 1.2 to 1.6 in the supporting

information) for the peak positions in the supergroup and
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Figure 2
Peak splitting of general hkl and special reflections after relaxation from a
cubic to a tetragonal unit cell. For special reflections, some displacements
may become 0 or degenerate, forming doublets and singlets. The actual
displacements depend on the values of hkl (here hkl = 321), but the split
pattern remains the same for a given class of reflections. Intensity scale
differs from Fig. 1.



after relaxation of the lattice symmetry, respectively, we obtain

the displacements �i(2�) for each of the desymmetrization

schemes, now in terms of the unit-cell parameters, the reflec-

tion indices hkl and the relative amount of linear (�a/a) or

angular (sin ��) desymmetrization.

In particular, for relaxation from cubic to tetragonal, the

dependence on unit cell cancels and one gets, e.g.,

�1ð2�Þ ¼ tan � a2 �1ð1=d2Þ=ðh2 þ k2 þ l2Þ

¼ tan �
l2

h2 þ k2 þ l2

1

D2
� 1

� �

’ � tan �
l2

N
2�a=a; ð11Þ

showing that �(2�) scales strongly with hkl, and where N =

h2 + k2 + l2 as usual. The barycentre for the three displace-

ments is always at (l2/N + k2/N + h2/N)/3 = 1/3, which holds

also for the singlet lll where the three possible displacements

[equations (5)–(7)] have identical values, i.e. lattice relaxation

may cause peak displacement alone, without an accompanying

broadening.

For relaxation from cubic to rhombohedral, one finds, e.g.,

�1ð2�Þ ¼ tan �
2 sin ��ðsin ��þ 1Þ

Wr

ðN sin ��þ hkþ kl þ lhÞ

h2 þ k2 þ l2

’ tan �
hkþ kl þ lh

N
2 sin ��; ð12Þ

where Wr = 1 � 3 sin2 �� � 2 sin3 �� and the approximation is

formally similar to the preceding case (the small summand

representing the barycentre, N sin ��, is ignored).

For the transition from hexagonal to orthorhombic, the

increment in the diffraction angle is given by, e.g.,

�1ð2�Þ ¼ � tan �
4c2ðhþ 2kÞ

2

4c2ðh2 þ hkþ k2Þ þ 3a2l2

D2 � 1

4D2 � 1
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2
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8

3
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for tetragonal to orthorhombic by

�1ð2�Þ ¼ tan �
c2k2

c2ðh2 þ k2Þ þ a2l2

1

D2
� 1

� �

’ � tan �
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c2ðh2 þ k2Þ þ a2l2
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and for orthorhombic to monoclinic by

�1;2ð2�Þ ¼ tan �
a2b2c2

h2b2c2 þ k2c2a2 þ l2a2b2

sin ��

cos2 ��

�
h2
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þ
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where the two possible displacements are specified.

From the last three examples it is seen that, in systems other

than cubic, the scatter of split positions depends also on the

unit-cell parameters which mix with the hkl term. One

important consequence relates to the compensation of peak

displacements by unit-cell refinement in the supergroup. In

Appendix A this issue is addressed in some depth, demon-

strating that compensation will occur in most cases, but reli-

able results are obtained only for the desymmetrization (cubic

> tetragonal) while in all other cases it delivers inadmissible

results due to mixing with other cell parameters. For our

purpose, this means that, in a Rietveld refinement, only peak

broadening and asymmetry appear as specific for a given

lattice relaxation, whereas line displacement will usually suffer

from wrong refinement in the supergroup which tries to match

a peak or a barycentre.

3.2. Generation of split peaks

Split peaks can easily be simulated by summation over

single Voigtians, each centred at one of the split positions and

multiplied with the corresponding multiplicities. The resulting,

generally asymmetric, split peak can be compared with the

calculated peak for the supergroup, in terms of position,

FWHM, skewness and a difference plot of their profiles. In the

following, we first show how the simulation of a split peak

works assuming three different cases of FWHM (including the

case of special reflection classes where no splitting occurs),

and then some representative cases from the literature are

discussed.

We chose here the case of desymmetrization from cubic to

tetragonal which gives three split positions as defined in

equations (5)–(7). To represent against 2�, we use equation

(11) which gives the three positions �1ð2�Þ =

� 2 tan �ð�a=aÞl2=N, �2ð2�Þ = � 2 tan �ð�a=aÞk2=N and �3ð2�Þ

= � 2 tan �ð�a=aÞh2=N to centre the Gaussians. We chose the

example of the leucite analogue KGaSi2O6 (Bell &

Henderson, 2019) with Ia3d > I41/a, ac = 13.58 Å, and the

reflection triplet for hkl = 321 as defined in Fig. 2, so that

tan � ¼ tan½arcsinð
ffiffiffiffiffi
14
p
� 0:7703=13:58Þ� = 0.22 and �1(2�) =

� 0.036�, �2(2�) = � 0.14� and �3(2�) = � 0.32�.

The values chosen for FWHM correspond to the instru-

mental broadening of X-rays at a synchrotron radiation source

[0.008� (2�)] (Gozzo et al., 2006), the typical instrumental

broadening of laboratory radiation [0.07� (2�)] (Balzar et al.,

2004) and, third, a typical FWHM observed in materials with

an important contribution to broadening from grain size [0.2�

(2�), corresponding to approximately 45 nm]. It is seen that

the chosen reflection triplet for hkl = 321 in Fig. 2 is well

(scarcely) resolved for synchrotron (laboratory) radiation

and only a single, deformed, peak is observed for materials

with small grain size. Interestingly, the simulation with the

third FWHM shows clearly the problems in defining a Gaus-

sian in the case of supergroup refinement as mentioned in

Appendix A.

Remember that the split peak is centred at its parent peak

angle, so the 2� dependence of FWHM can be ignored. Note

also that all split positions are negative, a consequence of ct >

ac (or �a/a > 0). For ct < ac (or �a/a < 0), the displacements

would appear reflected to positive angles. All simulations were

performed using a home-made scilab (Scilab Enterprises,

2012) routine (available upon request from the authors).
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In Fig. 3, a general hkl reflection and its splitting are

presented, but there are cases, less common but often referring

to strong reflections, of the special hkl reflection classes where

only a single displacement exists (Fig. 2, Figs. S2–S5). In these

cases, no split peak like the one in Fig. 3 is observed and lattice

relaxation is expressed only by peak displacement. This may

create problems with the simulation of the peak in supergroup

refinement (see Appendix A).

The first example from the literature concerns an important

detail for intensities. While, in most observations, the i split

components will have almost identical intensities, attention

has to be paid in cases of merohedry in the cubic, hexagonal

and tetragonal systems. A beautiful example is the transition

I4/m! I2/m reported in Fig. 4 (Carter, 2004). Here, the point

group 4/m is a merohedry, where reflections hkl are not

equivalent to reflections khl as in the holohedric group 4/m2/

m2/m, and I130 > I310 (the further splitting in hkl and � hkl is

caused by the transition to monoclinic symmetry). It is evident

that the width and asymmetry of the split peak depend on the

ratio I130:I310. In the example of Carter (2004), the split

components are well separated, but in the case of pseudo-

symmetric samples as considered here, the splitting would of

course hardly be visible and a single broadened peak is

expected, similar to the peak for x = 1.1 in Fig. 4.

Another problem is peak asymmetry. It has been pointed

out (Leineweber, 2017; Boschetti & Gregorkiewitz, 2023) that

anisotropic line broadening as found from Rietveld refine-

ment using the model of Popa (1998), Stephens (1999), if

properly applied, simulates the peak broadening due to lattice

relaxation. [As an example, from Stephens (1999), the refin-

able anisotropy parameters in the tetragonal system are S400 =

S040, S220, S202 = S022 and S004. For lattice relaxation to

orthorhombic symmetry, the expected ALB is described by

equations (35)–(36) in the supporting information which are

invariant to index l, so S202 = S022 and S004 have to be set to 0.]

This model can provide for anisotropic line broadening in hkl

but there is no way to account for the peak asymmetry which is

generally expected for lattice relaxation (see Figs. 1, S1, S3).

To compare the asymmetry of the peak expected for lattice

relaxation, the observed peak’s asymmetry can be assessed by

single peak refinement allowing for skewness.

4. Experimental evidence for lattice symmetry

relaxation

Lattice relaxation as a cause of ALB was first discussed

(Boschetti & Gregorkiewitz, 2023) in the Rietveld refinement

of cryptomelane Kx[Mn8O16] nanocrystals, where a small size

is desirable for application as electrode or supercapacitor

material. Observed line widths were in the order of 0.5–1.5�

(2�) and the anisotropic fluctuations could consistently be

explained assuming needle-like morphology and lattice

relaxation, the latter being essential to obtain an unbiased

particle shape of 61 � 61 � 178 Å3. Refinement in the

monoclinic subgroup I112/m was attempted [see the

supporting information of Boschetti & Gregorkiewitz (2023)]

but, with such line widths, peak overlap at higher angles 2�

becomes prohibitive and no better result could be obtained.

A literature search on cryptomelane Rietveld refinements

revealed that there are many cases where a tetragonal I4/m

symmetry was used (e.g. Gao et al., 2008; Huang et al., 2018;

Chong et al., 2018), and inspection of the difference intensity

plots reveals that correction for shape anisotropy has been

applied in the two former examples, whereas anisotropic

microstrain (Stephens, 1999) or lattice relaxation, though

visibly present, have apparently not been considered. In one

case (Espinal et al., 2012), with considerably smaller line

widths, Rietveld refinement was conducted in I2/m, but ALB

was not discussed and a difference profile has not been

published.

A clear case of lattice relaxation has been reported for

pyrolusite MnO2 (Fabrykiewicz et al., 2019). This structure is

normally described in space group P42/mnm but line broad-

ening is strongly anisotropic and has successfully been

modelled either using the Stephens (1999) microstrain model

in the tetragonal supergroup or passing to the orthorhombic

subgroup Pnnm. Interestingly, the higher-order reflection 400

in the orthorhombic model is well separated from other peaks
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Figure 3
The reflection triplet for hkl = 321 as defined in Fig. 2, presented in a
simulation of the diffraction pattern as Gaussian peaks versus 2�,
assuming three different typical FWHMs (see text).

Figure 4
X-ray diffraction patterns of BaxFe2xTi8� 2xO16 with x = 1.1, 1.2, 1.3, 1.4.
For x � 1.2 the symmetry is monoclinic with increasing degree of
desymmetrization. In the tetragonal case (x = 1.1) the reflections 310 and
130 coincide, but their intensities are different (I130 > I310) as can be
seen in the cases with x � 1.2. Modified from Carter (2004); � = 1.7 Å,
synchrotron radiation.



due to a much smaller unit cell than in cryptomelane and, with

a somewhat smaller peak width, a feeble splitting of this peak

is expected but not observed. An excellent fit could however

be achieved assuming a Gaussian distribution of very slightly

different orthorhombic unit cells, with a/b ranging from 4.39 to

4.40 Å.

While refinement in the subgroup is certainly preferable, we

have seen that this alternative to a description using aniso-

tropic line broadening is often hampered by peak overlap at

higher angles which increases with the dimensions and lower

symmetry of the unit cell. In fact, even with peak widths of

0.05� and less it may occur that the first, isolated, peaks are not

resolved while peaks at higher angles are strongly overlapping.

A nice example of this situation is the structure of MFI,

heavily studied for zeolite membranes (Weng et al., 2023),

where a large unit cell undergoes transition from ortho-

rhombic (Kokotailo et al., 1978) to monoclinic (Wu et al.,

1979). Here, reflection density for the monoclinic cell is so

high that sometimes an orthorhombic cell is alternatively used

(Leardini et al., 2014). In principle, there is no limit on line

widths and, even with synchrotron radiation, refinement in the

subgroup symmetry might run into difficulties.

From a practical point of view, incorporation of lattice

relaxation in a Rietveld code would be most easy using a

separation between the symmetries used for the crystal

structure (which could remain the supergroup) and the unit

cell (which lowers to the subgroup). In this way, atom para-

meters can be refined without correlations, and the unit cell

can adapt for lattice relaxation. It is interesting that a

separation between these symmetries has recently been

developed (Perez-Mato et al., 2010; Kerman et al., 2012) and

successfully used (Lewis et al., 2016; Rousse et al., 2017) in

symmetry mode triggered Rietveld methods where a

restrained structural refinement is undertaken in the frame of

the subgroup unit cell.

In desymmetrization, a separation between the atom and

the unit-cell parameters complies with a fundamental obser-

vation: while the structure factor is a smooth function of atom

parameters and varies little with desymmetrization, peak

positions are more akin to delta functions which vary

dramatically, even with a small desymmetrization of the unit

cell. Lattice relaxation is therefore of fundamental importance

for Rietveld refinement in pseudosymmetric cases.

5. Conclusions

The present findings can be applied to interpret peak misfits in

Rietveld refinement of pseudosymmetric materials. Misfit may

arise from line displacement and/or broadening due to lattice

symmetry relaxation. Both phenomena scale with the amount

of desymmetrization �a/a, �� and depend on the reflection

index hkl, with typical split patterns for different reflection

classes. Often, a single desymmetrization parameter gives rise

to a wealth of splitting schemes (and resulting peak shapes and

displacements) which would be difficult to simulate otherwise.

In the future, lattice symmetry relaxation might be adopted

as a routine in Rietveld code; this becomes particularly

important if other causes of ALB, such as grain size and

microstrain anisotropy, have to be refined to a meaningful

microstructure model.

APPENDIX A

Compensation of line displacement in supergroup refinement

In Section 3.1 it was stated that line displacement may to some

extent be compensated in supergroup refinement. In the

following, three different cases of desymmetrization are

discussed to show the intricacies of such compensation.

In the first case (cubic > tetragonal), the first displacement is

given by equation (11), and from the sum of the three possible

displacements one gets the shift of barycentre,

X
�ið2�Þ=3 ¼ tan �

h2 þ k2 þ l2

N

1

D2
� 1

� �

=3

¼ tan �
1

D2
� 1

� �

=3 ’ � tan �
2�a

a
=3; ð16Þ

due to desymmetrization, that can be compared with the

centre of the line obtained from refinement in the (cubic)

supergroup which, applying equation (10), is

�ctð2�Þ ¼ tan �
a2

N
�ctð1=d2Þ ¼ tan �

a2

N
ð1=d02 � 1=d2Þ

¼ tan �
a2

N

N

a2

1

D02
� 1

� �

¼ tan �
1

D02
� 1

� �

; ð17Þ

where D02 = 3D2/(1 + 2D2) ’ 1 + (D2 � 1)/3, i.e. the mantissa

of D02 is about 1/3 that of D2, as expected. There is, however, a

conceptual difference between the two cases: while equation

(16) refers to the barycentre of a generally asymmetric split

peak, equation (17) refers to a symmetric peak which may be

simulated with various degrees of broadening but will always

remain a single line, centred at the maximum of intensity. This

difference is expected to be small, so we can say that cell

enlargement in the supergroup refinement reflects reasonably

well the line displacement due to desymmetrization.

In the second case (cubic > rhombohedral), the first

displacement is given by equation (12), and from the sum of

the four possible displacements one gets the barycentre,

X
�ið2�Þ=4 ¼ tan �

1

4NWr

ð0þ 4N sin ��Þ2 sin ��ð1þ sin ��Þ

¼ tan �
1

Wr

2 sin2 ��ð1þ sin ��Þ

¼
cos2 � � Wr

Wr

’ tan � 2 sin2 ��: ð18Þ

The displacement of the line in the (cubic) supergroup

refinement is
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�crð2�Þ ¼ tan �
a2

N
�crð1=d2Þ ¼ tan �

a2

N
ð1=d02 � 1=d2Þ

¼ tan �
a2

N
N

Wr

a2Wr

�
1

a2

� �

¼ tan �
Wr

Wr

� 1

� �

¼ 0; ð19Þ

i.e. the line displacement cannot be simulated in the super-

group where � is constrained to 90�. The displacement of the

barycentre calculated from equation (18) is minimal anyway,

with 2 sin2 �� ’ 0:5� 10� 3 for �� = 0.95� which is about 1% of

the displacement due to �a/a = 0.025, two typical values of

desymmetrization taken from the cryptomelane structure

cited by Post et al. (1982).

In the third example for desymmetrization (tetragonal >

orthorhombic), the first of two possible displacements is given

by equation (14) and the barycentre is at

X
�ið2�Þ=2 ¼ tan �

ðh2 þ k2Þc2

ðh2 þ k2Þc2 þ l2a2

1

D2
a

� 1

� �

=2; ð20Þ

which is compared with the line shift in the (tetragonal)

supergroup refinement,

�toð2�Þ ¼ tan �
a2c2

ðh2 þ k2Þc2 þ l2a2
�toð1=d2Þ

¼ tan �
a2c2

ðh2 þ k2Þc2 þ l2a2

�
ðh2 þ k2Þc2D2

c þ l2a2D2
a

a2D2
ac2D2

c

�
ðh2 þ k2Þc2 þ l2a2

a2c2

� �

¼ tan �
1

ðh2 þ k2Þc2 þ l2a2

� ½ðh2 þ k2Þc2D2
cð1 � D2

aÞ þ l2a2D2
að1 � D2

cÞ�; ð21Þ

where an increment in the c axis, Dc, not foreseen by

desymmetrization, appears together with Da in a complicated

way. A compensation of line displacement in this case is

obviously possible but involves the c axis which should stay

independent, as seen in equation (20).

Concluding, one finds that a virtually true compensation is

possible for the case cubic > tetragonal, whereas it is impos-

sible for desymmetrization (cubic > rhombohedral) and

renders inadmissible results in all other cases due to mixing

with other unit-cell parameters which are actually not affected

by desymmetrization.
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