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Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle

characterization. A common approach to analysing nanoparticles in solution by

SAXS involves fitting the curve using a parametric model that relates real-space

parameters, such as nanoparticle size and electron density, to intensity values in

reciprocal space. Selecting the optimal model is a crucial step in terms of analysis

quality and can be time-consuming and complex. Several studies have proposed

effective methods, based on machine learning, to automate the model selection

step. Deploying these methods in software intended for both researchers and

industry raises several issues. The diversity of SAXS instrumentation requires

assessment of the robustness of these methods on data from various machine

configurations, involving significant variations in the q-space ranges and highly

variable signal-to-noise ratios (SNR) from one data set to another. In the case of

laboratory instrumentation, data acquisition can be time-consuming and there is

no universal criterion for defining an optimal acquisition time. This paper

presents an approach that revisits the nanoparticle model selection method

proposed by Monge et al. [Acta Cryst. (2024), A80, 202–212], evaluating and

enhancing its robustness on data from device configurations not seen during

training, by expanding the data set used for training. The influence of SNR on

predictor robustness is then assessed, improved, and used to propose a stopping

criterion for optimizing the trade-off between exposure time and data quality.

1. Introduction

Small-angle X-ray scattering (SAXS) is a characterization

technique widely used in the field of material science (Saurel

et al., 2019; Jouault et al., 2010) and biology (Lombardo et al.,

2020; Dyer et al., 2014; Kirby & Cowieson, 2014) to analyse the

shape (Wang et al., 2010) and size distribution (Rattana-

wongwiboon et al., 2022) of nanoparticles or biological

molecules such as proteins (Kikhney & Svergun, 2015;

Simpson et al., 2020). Following data acquisition, the classical

approach to analysing SAXS data involves several steps. The

first step is data reduction: the elimination of cosmic X-rays

from the signal, background noise subtraction, azimuthal

integration to reduce 2D data to 1D data when the particle

distribution is isotropic, and intensity normalization (Hopkins

et al., 2017). Once the data have been pre-processed, the first

step of the particle analysis is to select the appropriate

nanoparticle model to fit the SAXS curve, in the case where

the particle shape and size distribution are not known

beforehand. The scientific community has developed more

than 200 models, such as those listed in the software SasView

(https://www.sasview.org/), 70 of which are associated directly

with nanoparticle shapes. The analyst usually selects several

models likely to correspond to the sample, based on a priori
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knowledge. Once the models have been pre-selected, their

parameters need to be initialized based on the likely range

known from material processing, and the analyst performs a fit

of the experimental curve using optimization algorithms such

as the Levenberg–Marquardt (Moré, 1978) or DREAM

(Vrugt et al., 2009); finally, the analyst retains the optimized

model that best fits the data.

This method can give rise to a number of difficulties: firstly,

optimization algorithms are very sensitive to model initi-

alization; therefore, it can be tedious to find a good parameter

initialization for several models, particularly for models where

the number of parameters is high, with no guarantee of

avoiding convergence towards local minima. It is therefore

crucial to use a very restricted pre-selection of models to avoid

carrying out a time-consuming fit for a model that is ill-suited

to the experimental data. To speed up and simplify the

nanoparticle model selection phase, several studies have

proposed using a data-driven approach to train machine

learning predictors to automatically select the nanoparticle

model that is most likely to be optimal. These approaches are

facilitated by the possibility of rapidly simulating a large

number of SAXS curves associated with different nanoparticle

models to build up data sets used to train and test the

predictors (Archibald et al., 2020; Franke et al., 2018; Tomas-

zewski et al., 2021; Yildirim et al., 2024). More recently, it has

been shown that training deep convolutional neural network

(CNN) predictors on a database of simulated SAXS curves

enables accurate association of a nanoparticle shape to a

simulated input (Monge et al., 2024; Yildirim et al., 2024). Our

study also showed that the classification rules learned by the

predictor were applicable to real SAXS curves; however, the

results on real data deteriorate significantly when patterns

have characteristics that do not exist in the training database.

Since it has been verified that the sample characteristics

(electronic contrast, volume fraction, dispersity) were

included in the training data distribution, these differences

between trained and tested patterns may be due in part to

differences between the configuration of the instrument

simulated in the training database and that actually used to

acquire the real data, to differences in noise levels, or to other

experimental complexity (polydispersity function, additional

sources of scattering).

SAXS instrumentation comes in a wide variety of config-

urations and parameters. High-brilliance sources are available

at synchrotron facilities, enabling very low noise data to be

obtained with small acquisition times, while laboratory devices

have less powerful sources with wider beams that generate a

smearing effect, and lower photon flux resulting in lower

signal-to-noise ratio (SNR) in the data. Most devices have

sample-to-detector distances that can be set over a wide range,

variable photon energy, and there are many types of photon

detectors with varying numbers and sizes of pixels, which

creates great variability in the ranges of scattering vector q

obtained over different experiments. A universal predictor

must necessarily be robust to variations in the q-vector range.

The first objective of the present report is to assess the

robustness of the predictor proposed by Monge et al. (2024) to

variations over q-space ranges, and to show that a single

predictor trained on several different q ranges is robust to

configurations that were not seen during the training step.

Robustness to different noise levels is another essential

criterion for a universal predictor, all the more important as

the use of laboratory SAXS instruments for the analysis of

low-contrast samples strongly penalizes the exposure time

versus SNR trade-off. Proposing a predictor robust against

low-SNR input data and determining the minimum SNR

necessary for a good prediction can help determine the

optimal measurement time for obtaining reliable results. The

second objective of this study is therefore to evaluate the

performance of the predictor proposed by Monge et al. (2024)

as a function of the SNR level.

2. Proposed approach

2.1. Influence of device configuration

SAXS instrumentation presents a wide variety of devices

and great flexibility in their settings. The sample-to-detector

distance and detector characteristics vary the range of q space

over which the curve is represented. Equivalently, variations

of photon energy also change this range of scattering vectors.

A nanoparticle model predictor must be robust to variations

in q-space ranges, and must be able to make accurate

predictions on data represented over q-space ranges that have

never been seen during the training phase. To assess the

robustness of the predictor described by Monge et al. (2024), a

database composed of SAXS curves simulated from nine

nanoparticle models was generated. This data set is the same

as the one described by Monge et al. (2024), which contains

4184 I(q) curves for each of the following nanoparticle models:

sphere, oblate ellipsoid, prolate ellipsoid, cylinder, core–shell

sphere, core–shell prolate, core–shell oblate, core cylinder and

hollow sphere. These particle form factors were chosen as

being illustrative of classical nanoparticle shapes, but the

methodology presented here is naturally applicable to other

form factors. For each form factor the different parameters

were varied randomly (dispersity, contrast, shape parameters).

In the following, this data set is split between train and test in

the proportion of 90%/10%. Several device configurations are

applied to this theoretical data set to generate nine realistic

data sets which take into account the experimental parameters

of a device. The nine device configurations used represent a

Xenocs Xeuss 3.0 device in various configurations. Some

parameters are common to all configurations: the detector is a

Dectris Eiger1M, the source is Cu with a wavelength of 1.54 Å

and intensity of 9.27 � 106 photons s� 1, and exposure time is

20 min. The configurations differ in sample-to-detector

distance dsd, which also results in a variation in beam width

represented by the FWHM value, expressed in Å� 1. The

values of FWHM are chosen empirically from measurements

on real devices. The sample-to-detector distances are between

900 and 4500 mm, and scaled to obtain a linear variation

between the qmax values. Table 1 details the q-space ranges

associated with the sample-to-detector distances.
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The predictor described by Monge et al. (2024) is composed

of a set of pre-processing steps, a representation transformer

of CNN type and a classifier of the type XGBoost (eXtreme

Gradient Boosting) (Chen & Guestrin, 2016); it was imple-

mented using Tensorflow (v.2.5.0) (Abadi et al., 2016) and

XGBoost (v.1.5.2) and trained on an Nvidia RTX 3080 GPU.

Details of the architecture and hyperparameters used are

available in Appendix A. To evaluate the generalizability of

the predictor to several configurations, it is first trained in a

mono-configuration scenario, then in a multi-configuration

scenario. In mono-configuration training, a specific predictor is

trained on a data set associated with a single device config-

uration, then tested on a data set associated with this same

configuration, for all configurations. Multi-configuration

training consists of training a predictor on more than one

configuration. In the all-configurations scenario, the predictor

is trained and tested on the nine configurations. During the

training step, it is therefore exposed to the same samples

simulated in nine different device configurations. Other multi-

configuration training scenarios are explored to test the

robustness of the predictor to data acquired via a new device

configuration: unseen-configuration training consists of

training a predictor on some device configurations and testing

it on data simulated with configurations absent from the

training data set.

2.2. Noise influence

While it is possible to obtain data with a high SNR in less

than a second in synchrotron facilities, laboratory instru-

mentation with less powerful sources implies that a trade-off

has to be made between sample exposure time, which can last

several tens of minutes, and the SNR of the acquired data.

This trade-off is all the more critical when the sample to be

analysed has a low electronic contrast between the particles

and the solvent, or when the sample has a low concentration.

On the other hand, optimizing this trade-off is important when

the experiment requires the user to monitor in situ reactions

whose kinetics are close to those of the exposure time. In this

scenario, establishing a criterion based on the SNR to enable

the user to know when an acquisition can be completed, and

proposing analysis tools efficient even in a low-SNR context

are two ways of improving the exposure time versus SNR

trade-off.

Four training data sets are generated by associating the

simulated data set mentioned in Section 2.1 with several

device configurations. Each training data set is simulated with

a different exposure time: 1, 30, 1200 and 2000 s. The fixed

parameters are as follows: the detector is a Dectris Eiger1M,

the source is Cu with a wavelength of 1.54 Å and an intensity

of 9.27 � 106 photons s� 1 . Unlike in Section 2.1 in which the

data in a data set consisted of a single configuration, in this

section a training data set contains the data simulated from all

the (dsd, FWHM) pairs described in Section 2.1. The SNR of a

SAXS curve is influenced not only by exposure time but also

by factors such as sample concentration and electronic

contrast, or background correction. Consequently, the data set

encompasses a spectrum of SNR values, with this spectrum

fluctuating in relation to exposure time. Ten test data sets were

also generated, associated with the following exposure times:

1, 30, 110, 240, 410, 630, 890, 1200, 1600 and 2000 s, allowing

the predictor to be evaluated over a wide range of SNR. In

order to reduce the computation time allocated to the simu-

lations, these test data sets are composed solely of simulated

data with a sample-to-detector distance of 1800 mm and with

an FWHM of 0.00165 Å� 1. As in Section 2.1, various training

scenarios are explored. In mono-time training, the predictor is

trained on one of the training data sets and tested on all test

data sets. In multi-time training, the predictor is trained on the

entirety of the training data sets and subsequently tested on

the complete set of test data sets.

In the simulated SAXS curves, the noise level is influenced

by the intensity detected by the device and follows a Poisson

distribution. This means that the SNR changes depending on

the intensity value along the curve, which varies by several

orders of magnitude. If we neglect the noise arising from the

buffer subtraction, at a given q value the SNR is defined as

SNRðqÞ ¼ IðqÞ=�ðqÞ, �ðqÞ being the standard deviation of the

noise on the SAXS curve. In practice, �ðqÞ can be estimated

easily during azimuthal integration under the two following

assumptions: only Poisson noise is present and detector pixels

are independent:

�ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffi
IðqÞ

NðqÞ

s

;

where NðqÞ is the number of 2D image pixels used to compute

the 1D intensity value IðqÞ at the azimuthal integration step.

See Appendix B for the proof.

SNRðqÞ can then be expressed as follows:

SNRðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðqÞNðqÞ

p
:

For simplicity of analysis we need a single SNR value per

curve. Therefore, we have chosen to define the SNR of a curve

as the SNR computed at the value of q where the contribution

to integrated intensity IðqÞq2 is maximal. The SNR values will

therefore be large ones, not representative of parts of the

curve where the data are noisy, but this criterion makes it
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Table 1
Sample-to-detector distances dsd and beam FWHM used to simulate the
various configurations and their associated q-space ranges.

SAXS configuration

dsd (mm) FWHM (Å� 1) qmin (Å� 1) qmax (Å� 1) �q (Å� 1)

900 0.00240 1:70� 10� 4 3:02� 10� 1 3:4� 10� 4

1000 0.00225 1:53� 10� 4 2:72� 10� 1 3:1� 10� 4

1130 0.00210 1:35� 10� 4 2:41� 10� 1 2:7� 10� 4

1290 0.00195 1:19� 10� 4 2:11� 10� 1 2:4� 10� 4

1500 0.00180 1:02� 10� 4 1:81� 10� 1 2:0� 10� 4

1800 0.00165 0:85� 10� 4 1:53� 10� 1 1:7� 10� 4

2250 0.00150 0:68� 10� 4 1:21� 10� 1 1:4� 10� 4

3000 0.00135 0:51� 10� 4 0:91� 10� 1 1:0� 10� 4

4500 0.00120 0:34� 10� 4 0:61� 10� 1 0:7� 10� 4



possible to compare samples with different particle size or

electronic contrast.

3. Results and discussion

3.1. Multi-configuration training

Training the predictor under various training scenarios

involves distinct steps. In the mono-configuration training

scenario, for each device configuration, a predictor is trained

on the associated training data set specific to that configura-

tion and subsequently tested on the test data set corre-

sponding to the device configuration. In the multi-

configuration training scenario, a predictor is trained across all

device configurations and tested against the complete set of

test data sets. The third training scenario, termed ‘unseen-

configurations training’, is further divided into sub-scenarios.

The core idea of this experiment is to evaluate the predictor’s

performance on device configurations it has not encountered

during training. In the 8-seen-configurations scenario, the

predictor is trained on eight out of the nine configurations

(configs) and tested on the configuration absent from its

training. This experiment is executed across all test

data sets. Within the 5-seen-configs, 3-seen-configs and 2-seen-

configs scenarios, training is conducted across multiple

configurations, and the predictor’s performance is assessed on

configurations 1000, 1290, 1500 and 2250 mm, which were not

seen during training. The data sets utilized for training are as

follows:

5-seen-configs: 900, 1130, 1800, 3000, 4500 mm.

3-seen-configs: 900, 1130, 4500 mm.

2-seen-configs: 900, 4500 mm.

Fig. 1 presents the results obtained for the different training

scenarios. Regardless of the scenario, predictors are trained

and tested five times on the same data batches, and the results

presented in Fig. 1 correspond to the mean accuracy over the

five training sessions. The uncertainty in the results is repre-

sented by three times the standard deviation of the accuracy

across the training sessions.

On most test data sets, the accuracy achieved with the all-

configuration training scenario surpasses that obtained

through mono-configuration training. Mono-configuration

training outperforms all-configuration training only on the test

data set associated with a distance of 4500 mm. Across device

configurations ranging from 900 to 2250 mm, results are

enhanced by 0.4 to 2.3 accuracy points by an all-configuration

training, indicating a significant improvement. On the test data

set associated with the 3000 mm configuration, both training

scenarios yield comparable performances, while the all-

configuration training results in a 1.6 accuracy point decline on

the test data set associated with the 4500 mm configuration.

Thus, all-configuration training offers a dual advantage over

mono-configuration training. First, it enhances the predictor’s

reliability in its classification task. Moreover, it makes model

deployment easier by necessitating only a single predictor

instead of one per device configuration. This not only reduces

the software’s memory footprint but also eliminates the need

to manage predictor selection based on the device configura-

tion used for input data acquisition.

Let us now compare the results of the all-configuration

scenario with those of the unseen-configuration scenarios. A

decrease in accuracy is observed in the 8-seen-configurations

scenario, i.e. when the predictor is trained on all configurations

except the test one, compared with the all-configurations

training. This decrease in accuracy ranges from 1.6 to 2.7

points for configurations associated with intermediate

distances of 1000 to 3000 mm, and is more pronounced at

extrema distances with a loss of 4.8 points at 900 mm and 8.8

points at 4500 mm. The training scenario of 5-seen-config-

urations remains at a lower yet acceptable accuracy; however,

the 3-seen-configurations and 2-seen-configurations lead to

even larger losses in accuracy as the number of configurations

seen during training decreases.

When the predictor is trained using all configurations, it

performs very well on configurations it has already seen.

However, when we test it on a configuration not included in its

training set, like in the 8-seen-configurations scenario, there is

a noticeable but minor drop in accuracy. This drop is less

significant when the test configuration is surrounded by similar

configurations in the training data. Specifically, when we

remove configurations similar to the test one from the training

set, the drop in accuracy becomes more pronounced. In the 8-

seen-configurations scenario, the predictor’s accuracy

decreases more when tested on configurations with higher

qmax or lower qmin than those on which the predictor

has been trained. This highlights that having a dense training

set around unseen test configurations is crucial for accurate

predictions. Therefore, training the predictor with a compre-

hensive range of device configurations ensures its reliability,

especially when dealing with new configurations or q-space

ranges.
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Figure 1
Mean accuracy of the predictor over training sessions for each test data
set in the different training scenarios. Uncertainty corresponds to 3�, with
� the standard deviation of the accuracy over training sessions. The x axis
corresponds to the sample-to-detector distance of the test data set
configuration.



3.2. Influence of noise level on prediction accuracy

In this section, we compare various training scenarios to

gauge how the predictor’s robustness evolves across different

SNR. Specifically, we examine the SNR of the data to which

the predictor is exposed during training. Fig. 2 provides the

density of SNR levels in each of the training data sets and a

comparative analysis of the predictor’s macro F1-score for

each of the different scenarios. Macro F1-score is chosen

instead of accuracy to take into account the imbalance of the

labels at a given SNR.

Training the predictor on data sets with exposure times of

1200 and 2000 s proves effective, achieving an F1-score

exceeding 0.8 for data with an SNR above 2500. However, as

the SNR decreases, the performance diminishes sharply: at an

SNR of 300, the F1-score drops to 0.4. Conversely, training on

data sets with 1 or 30 s exposure times enhances the predic-

tor’s resilience at low SNR. Yet, this approach leads to a

notable decrease in performance at high-SNR levels, yielding

results inferior to those obtained from the 1200 and 2000 s

data sets when dealing with high-SNR data. Training on all

four data sets concurrently offers a balanced approach. It

captures the advantages of individual data set training without

inheriting their respective limitations. Adopting this multi-

dataset training strategy consistently yields superior accuracy

rates across all SNR levels.

In the analysis presented in Fig. 3, the confusion matrices

provide valuable insights into the efficiency of the predictor

trained on the all-times scenario across various SNR levels.

Specifically, in the high-SNR matrix, misclassifications

predominantly occur among the core–shell models, which are

mainly confused with each other. Among the 26% of

misclassified core–shell oblates, the confusion is distributed as

follows: 9% are confused with core–shell prolates, 9% with

core–shell spheres, 4% with core–shell cylinders, 1% with

hollow spheres, 1% with oblates and 2% with spheres.

Notably, models with homogeneous electron densities, namely

spheres, prolates, oblates and cylinders, exhibit minimal

confusion. In contrast, the low-SNR matrix reveals a signifi-

cant increase in misclassification rates for all models except
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Figure 2
The upper graph represents the mean macro F1-score of the predictor for
the different training scenarios, against the SNR of the tested data. The
lower graph represents the SNR histograms of the different training data
sets.

Figure 3
Confusion matrices of the predictor trained on the all-times data set. The
confusion matrix for low SNR is derived from data with SNR between 100
and 400, while the high-SNR matrix uses data with SNR from 4000 to
9000. These confusion matrices are normalized by the number of
predictions, so that the sum of a row is equal to 1. As an example, on (a)
85% of the spheres were well classified, 3% were confused with prolates,
8% with oblates, 1% with hollow spheres and 3% with core–shell spheres.



cylinders. The predictor struggles to distinguish core–shell

models, which are frequently misclassified among themselves

and with models possessing homogeneous electron densities.

This is likely related to the fact that the signal characteristic of

the core–shell nature of the particle is mainly present at large

values of the scattering vector where the signal noise is high.

Actually, the predictor retains some efficacy with over 75%

accuracy for sphere, prolate, oblate, cylinder and hollow

sphere models. However, this represents a notable decline in

performance compared with high-SNR conditions.

Fig. 4 provides a deeper insight into this analysis by

displaying the F1-score per model across various SNR levels

when the predictor is trained on the all-times data set. It is

evident that starting from an SNR of 500, the F1-score

surpasses 0.8 for all four homogeneous density models, which

is close to the maximum value achievable by this model. In

contrast, achieving an F1-score level of 0.7 requires an SNR

above 800 for most of the non-homogeneous models and up to

6000 for core–shell oblates.

The predictor’s performance is influenced by the SNR of

the input data. Exposing the predictor to a broad range of

SNR values during the training phase enhances its efficacy

across all SNR levels, with a notable improvement at lower

SNR values. Understanding how the predictor’s capability to

correctly match a SAXS curve to the appropriate model

evolves with varying SNR, assuming the input data fall within

the training distribution, allows for the establishment of

minimum SNR thresholds for data acquisition. These thresh-

olds vary depending on the specific use-cases: data with an

SNR from 1000 to 10 000 appear necessary for analysing

nanoparticle data potentially characterized by multiple elec-

tron densities. In contrast, an SNR greater than 500 should

suffice for deriving insights from data originating from

homogeneous nanoparticles. These absolute values are

specific to the particular case of our study and may vary if

different form factors, or a large number of them, were

included in the database.

3.3. Outlook: validation on experimental data

Currently, no database containing labelled experimental

SAXS curves is available to the scientific community,

complicating validation efforts. Studies such as those of

Archibald et al. (2020), Tomaszewski et al. (2021), Monge et al.

(2024), Yildirim et al. (2024), which propose using machine

learning approaches for the classification of SAXS data, have

all been conducted using simulated data or very limited

experimental data sets. While awaiting the opportunity to

perform a statistical validation of the influence of device

configuration or SNR on experimental data, we have eval-

uated the applicability of our approach to experimental data

on a limited number of samples.

SAXS profiles of three samples of Au nanoparticles in

solution were acquired on a Xenocs Xeuss 3.0 device with

acquisition times varying from 1 to 20 min, resulting in an

SNR between 180 and 1450. Samples were also characterized

by transmission electron microscopy (TEM) after drying,

using a Jeol 1010 instrument working at 100 kV located at

IRAMIS/LIONS at CEA Saclay, allowing us to determine

without ambiguity their form factor, as well as polydispersity,

and to check that the aspect ratios of the nanoparticles are

well within the limits defined during the simulations. One

sample is labelled as spheres and two as prolate ellipsoids. An

example of the SAXS profile is shown in Fig. 6.

Using the neural network classifier trained on simulated

data presented above, in the all-SNR scenario, we observe in

Fig. 5 the evolution of the softmax output corresponding to the

correct model, as a function of the SNR. This measure, which

is the most appropriate metric in the absence of a statistically

representative data set, can be interpreted as a probability and

represents the confidence of the predictor. However, this

interpretation has its limitations, as the outputs of a neural

network with softmax activation trained to minimize a cross-

entropy loss are often subject to overconfidence (Pearce et al.,

2021).

For the sample of spherical nanoparticles, the softmax

output remains close to 1 regardless of the SNR, indicating

high classifier confidence even at a low SNR below 200. For
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Figure 4
The graph represents the F1-score per model against the SNR of the
tested data, obtained using the predictor trained on the all-times data set.

Figure 5
Evolution of the softmax output associated with the right model as a
function of the SNR for three nanoparticle samples.



the two prolate samples, the classifier’s confidence increases

with the SNR, stabilizing at an SNR threshold of 700 for

prolate sample 1 and around 400 for prolate sample 2. The

better confidence of sphere prediction when compared with

prolate is consistent with the shape-dependent accuracy

determined on the simulated data. These examples demon-

strate that the quality of predictions can be significantly

affected by the SNR, and future access to a more compre-

hensive data set should enable precise validation of the SNR

thresholds necessary for accurate predictions. This, in turn,

would allow for the minimization of exposure time required

for a sample.

4. Conclusion

In this paper, we have presented an investigation of the

performance of a SAXS nanoparticle model predictor when

subjected to data from various device configurations and

different noise levels to assess its degree of robustness. The

predictor was trained on different data sets containing data

represented over one or multiple q ranges and tested on data

represented over both seen and unseen q ranges during

training. The predictor’s performance is enhanced by the

presence of a variety of different q ranges in the training data,

and it demonstrates excellent robustness to new device

configurations when the training data are sufficiently similar to

them, namely a comparable accuracy with that of configura-

tions seen during training. Robustness to noise was evaluated

by training the predictor on different data sets with varying

SNR and testing it on data sets covering a broad range of

SNR. The predictor exhibits significant performance variation:

its performance is weak when the SNR is very low and above

0.8 in average when the SNR is very high. Performance across

different SNR levels is influenced by the training data set,

which must encompass a broad range of SNR to achieve

optimal performance. This study makes it possible to identify

minimum SNR thresholds that can be targeted during data

acquisition to enable reliable use of the predictor, thus

providing the experimenter with an objective criterion for

determining the necessary exposure time for their experiment.

One significant limitation of the classification approaches

presented in this study and in other studies in the literature is

the fact that it is currently limited to in-distribution data,

namely the evaluated data should be well represented by the

training database. In cases where a sample would be out of

distribution (e.g. the form factor is not included in the training,

sample with only noise etc.) the experimentalist may be

deceived by the classification result. To solve this issue, we are

currently working on the development and implementation of

a specific model for out-of-distribution detection.

APPENDIX A

Predictor details

The predictor used throughout the study is the optimal

predictor described by Monge et al. (2024). This consists of a

CNN employed as a space transformer, and an XGBoost for

the classification task. The network is trained using the Adam

optimizer and categorical cross-entropy as loss function and its

architecture is as follows:

1D convolutional layer [n filters: 64, kernel size: 7, activa-

tion function: ReLU (rectified linear unit)].

1D convolutional layer (n filters: 64, kernel size: 7, activa-

tion function: ReLU).

Max pooling operation (kernel size: 6).

Dropout operation (rate: 0.25).

1D convolutional layer (n filters: 64, kernel size: 7, activa-

tion function: ReLU).

1D convolutional layer (n filters: 256, kernel size: 7, acti-

vation function: ReLU).

Max pooling operation (kernel size: 6).

Dropout operation (rate: 0.25).

Global max pooling (output size: 256).

The XGBoost classifier is composed of 200 trees.

APPENDIX B

Noise estimation

Within the framework of probability theory and random

signals, the intensity of the SAXS curve at a given q value is a

random variable ~I of variance Vð~IÞ ¼ �2ð~IÞ. ~I is the result of

the azimuthal integration of the 2D image:

~I ¼
1

N

X

p2P

~Ip; ð1Þ

where P is the set of 2D image pixels used to compute the 1D

intensity at the given q value, N the cardinality of P and ~Ip the

random variable representing the intensity (i.e. the number of

photons) received by a pixel p. We assume that all the ~Ip

follow the same Poisson law of expectation E.

We then have

Vð~IÞ ¼ V
1

N

X

p2P

~Ip

 !

:

We assume that all pixels of the detector are independent two

by two, so

Vð~IÞ ¼
1

N2

X

p2P

Vð~IpÞ: ð2Þ

As all the ~Ip follow a Poisson law of expectation E, we have

Vð~IpÞ ¼ E: ð3Þ

So, combining (2) and (3):

Vð~IÞ ¼
E

N
ð4Þ

�ð~IÞ ¼

ffiffiffiffi
E

N

r

: ð5Þ

Considering that the user has access to one observation per

random variable ~Ip (i.e. the user has access to one experi-

mental image) and thus one observation of ~I, we note those

observations Ip and I, respectively, and we have
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I ¼
1

N

X

p2P

Ip: ð6Þ

Expectation of the Poisson law can then be approximated by

the average of the observations Ip, and using (6) we have

E ’
1

N

X

p2P

Ip ¼ I ð7Þ

and

�ð~IÞ ’

ffiffiffiffi
I

N

r

: ð8Þ

The SNR of the 1D intensity at a given q value can then be

computed from the observed image using this approximation:

SNR ¼
~I

�ð~IÞ
’

I
ffiffiffi
I
N

p ¼
ffiffiffiffiffiffi
NI
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiX

p2P

Ip

s

: ð9Þ

APPENDIX C

Experimental data

Fig. 6 shows the SAXS profiles of the three Au nanoparticle

experimental samples.
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