Poster

Ca(Zn1-xCdx) \approx 3/5: Disorder models for known and new hexagonal intermetallics

Caroline Röhr, Marco Wendorff

University of Freiburg, Germany caroline.roehr@ac.uni-freiburg.de

Starting from the long-known hexagonal zincides $CaZn_{3+x}$ [1] and $CaZn_{5+x}$ [2] a small $Zn\leftrightarrow Cd$ substitution leads to ternary variants of these partly disordered border compounds. Similar to the border phase 'CaZn3', the ternary derivative $Ca3M8[Ca]_x][Zn_3]_{1-x}$ [x=1/3; hexagonal, space group *P*63/*mmc*, *a*=936.7(1), *c*=739.2(1) pm, *R*1=0.024] exhibits CaIn2-type structure elements besides sixfold μ_3 -capped icosahedra (Fig. 1 b: yellow polyhedra). The latter follows from the dissection of the infinite columns of face-sharing icosahedra (cf. BaLi₄-type) by a 2:1 disorder *M*₃ \leftrightarrow Ca (Fig. 1 b).

For 'Ca M_3 ', an increased Cd content of approx. 30% resulted in the formation of a new complex again hexagonal phase [space group $P6^-2m$, a=1555.5(1), c=1531.3(1) pm, R1=0.087]. In this structure, which is topologically related to the CaCu5-type, [Zn@Zn₁₂] icosahedra (3 Cu of CaCu₅, Fig 1a: yellow) are connected via Zn-Zn exo-bond to form |:AA:| stacked kagome nets. The remaining 2 Cu positions are occupied by [Ca@ M_{15}] FK15 ccp (dark gray). The large hexagonal channels (Ca site of CaCu₅) are stuffed by two [Ca M_{16}] polyhedra sharing a common M_3 face. The disorder of this triangle and their surrounding causes the occurence of either cutouts of Zn kagome nets (part I: Ca₅ M_{35}) or a Cd-rich building block (part II: Ca₈ M_{29}) (Fig. 1 a). The final compound's composition (Ca_{42.6} $M_{100.8}$) is thus between Ca₄₁ M_{104} and Ca₄₄ M_{98} .

In the case of the CaM5 section, a ternary variant of the EuMg_{5+x}-type structure [hexagonal, space group $P6_3/mmc$, a=926.7(1), c=942.0(1), R1=0.03] appears at a Cd proportion of 25 %. Herein, sixfold μ 3 extended double tetrahedra stars (M_{11} , DTS, red in Fig. 1 c) are connected with each other and with chains of empty M_8 cubes (blue). Here, the Cd \leftrightarrow Zn₂ disorder (cf. difference electron densities in Fig. 1 c) within the 00z channels finally lead to the overall composition Ca₆ M_{30} [Cd][Zn₂] (=Ca₃ $M_{5.5}$).

Fig. 1: Crystal structure of the hexagonal title compounds $Ca_{42.6}M_{100.8}$ (a), $Ca_{10}M_{31-\delta}$ (b) and $CaM_{5.5}$ (c). [Ca/Zn/Cd/*M* atoms: yellow/red/blue/magenta balls; polyhedra: $[M@M_{12}]$ icosahedra: yellow; $[M_5M_6/2M_{6/2}]$ eDTS: red; selected Ca-ccps: gray polyhedra.]

In addition to these new compounds at the CaM3 and CaM5 section, we also report on the Zn/Cd phase widths of the border phases $CaZn_{11}$, $CaCd_6$ (1:1 approximant) and the iQC CaCd [4] as well a on the Ca-rich section Ca_3Cd_2 - Ca_5Zn_3 . Besides crystallographic aspects, theoretical calculations elucidate the chemical bonding of these polar zincide/cadmides.

- [1] M. L. Fornasini, F. Merlo, Acta Crystallogr., B36, 1739-1744 (1980).
- [2] M. Wendorff, C. Röhr, Z. Naturforsch. 62b, 1549-1562 (2007).
- [3] M. Schwarz, M. Wendorff, C. Röhr, Z. Kristallogr. 232, 515-541 (2017).
- [4] H. Takakura, C. P. Gomez, A. Yamamoto, M. de Boissieu, A. P. Tsai, NatureMaterials 6, 58-63 (2007).