Poster

Closing Some Gaps of Knowledge: Single Crystals of Nd₂[Sb₄O₈]Cl₂

Ralf J. C. Locke¹, Thomas Schleid¹

¹University of Stuttgart, Institute for Inorganic Chemistry, Germany schleid@iac.uni-stuttgart.de

The neodymium(III) oxidoantimonate(III) chloride NdSb₂O₄Cl is accessible from solid-state reactions of Sb₂O₃ with Nd₂O₃ and NdCl₃ at 750 °C for two days. It crystallizes like SmSb₂O₄Cl and EuSb₂O₄Cl [1] in the centrosymmetric tetragonal space group P4/ncc with the lattice parameters a = 793.85(4) pm and c = 1767.56(12) pm (c/a = 2.227) with Z = 8 (CSD number: 2350399). Thus it can also be described with the crystal-chemical formula Nd₂[Sb₄O₈]Cl₂ for Z = 4, for comprising isolated [Sb₄O₈]⁴ rings. This structural motif has some very close similarities to the well-known series of non-centrosymmetric $LnSb_2O4Cl$ representatives (Ln = Gd - Lu) [2], crystallizing in the tetragonal space group P42₁2. The crystal structure contains two positions for the Nd³⁺ cations (Nd1 at 4a: 3/4, 1/4, 1/4 and Nd2 at 4c: 1/4, 1/4, 0.26038(9)), two partially occupied Sb³⁺ cations (Sb1 at 16g: 0.9938(3), 0.0575(3), 0.10463(9) and Sb2 at 16g: 0.0402(16), 0.9787(16), 0.1046(4)) and two O²⁻-anion sites (O1 at 16g: 0.0077(16), 0.6782(16), 0.1784(8) and O2 at 16g: -0.0009(16), 0.2910(16), 0.1619(8)) as well as two Cl⁻anion sites (Cl1 at 4b: ³/₄, ¹/₄, 0 and Cl2 at 4c: $\frac{1}{4}$, $\frac{1}{4}$, 0.4892(5)). All Nd³⁺ cations have eight oxygen atoms as nearest neighbors arranged as square prisms [NdO₈]¹³⁻, which are connected to layers by four parallel edges according to $\frac{2}{\infty} \{ [NdO_{8/2}^{e}]^{5-} \}$ with a two-dimensional fluorite-like topology. The Sb^{3+} cations together with three oxygen atoms each and their lone-pair of electrons form ψ^1 -tetrahedra [SbO₃]³⁻. Four of these $[SbO_3]^{3-}$ entities are vertex-connected to ${}^{0}_{0}\{[Sb_4O_8]^{4-}\}$ rings with four bridging and four terminal oxygen atoms. All three centrosymmetric representatives (Ln = Nd, Sm and Eu), in contrast to the series of non-centrosymmetric ones (Ln = Gd - Lu), have a doubled lattice parameter c. The antimony positions reflect a severe stacking fault order, which is why there are two partially occupied antimony positions, 77 % for Sb1 and 23 % for Sb2.

Figure 1. The two distinct $[NdO_8]^{13-}$ polyhedra with their antimony decoration (*left*), infinite layers of edge-sharing $[NdO_8]^{13-}$ polyhedra (*mid, top*), an isolated ring $[Sb_4O_8]^{4-}$ of four vertex-linked ψ^1 -tetrahedra $[SbO_3]^{3-}$ with neodymium decoration (*mid, bottom*) and the extended tetragonal unit cell of NdSb₂O₄Cl as viewed along [010] (*right*).

^[1] Locke, R. J. C., Schleid, Th. (2022). Z. Anorg. Allg. Chem. 648, e202200118.

^[2] Locke, R. J. C., Goerigk, F. C., Schleid, Th. (2022). Z. Naturforsch. 77b, 495.