Poster

Pr₃OI[AsO₃]₂: The First Oxide Iodide Oxoarsenate of the Rare-Earth Metals

Ralf J. C. Locke¹, Arnela Erden¹, Thomas Schleid¹

¹University of Stuttgart, Institute for Inorganic Chemistry, Germany

schleid@iac.uni-stuttgart.de

In analogy to the *non*-centrosymmetric $Ln_3OX[AsO_3]_2$ representatives (Ln = Ce - Nd, Sm – Dy; X = Cl and Br)^[1–5], the isostructural iodide Pr₃OI[AsO_3]_2 was obtained in synthetic experiments with Pr, PrI₃, As₂O₃ with CsI as flux by means of a partial metallothermic reduction at 850 °C. The green, needle-shaped crystals could be recovered phase-pure after removal of the resulting monolithic arsenic crystal. Pr₃OI[AsO₃]₂ crystallizes in the tetragonal space group $P4_2nm$ with the lattice parameters a = 1289.13(9) pm, c = 559.24(5) pm and c/a = 0.434 for Z = 4 (CSD-2306280). The crystal structure contains two positions for the Pr³⁺ cations (Pr1 at 4c: 0.24148(8), 0.24148(8), 0.0000(6) and Pr2 at 8d: 0.13722(9), 0.45738(9), 0.5286(7)), only one for I⁻ (I at 4c: 0.37891(12), 0.37891(12), 0.4725(5)) and As³⁺ (As at 8d: 0.03472(15), 0.21332(15), 0.4988(7)) as well as four O^{2–}-anion sites (O1 at 4b: 0, $\frac{1}{2}$, 0.261(5); O2 at 8d: 0.2113(12), 0.4201(12), 0.966(4); O3 at 8d: 0.0961(13), 0.2768(13), 0.746(3); O4 at 8d: 0.0949(14), 0.2916(14), 0.275(3)). (Pr1)³⁺ is surrounded sixfold by O^{2–} anions forming trigonal prisms, which are capped by an I⁻ anion each ([(Pr1)O₆I]^{10–}), whereas (Pr2)³⁺ has also one I⁻, but seven O^{2–} anions as coordination sphere resulting in bicapped trigonal prisms [(Pr2)O₇I]^{12–} polyhedra are stacked alternatingly along [001] to form columns and edge-linked with [(Pr1)O₆I]^{10–} polyhedra, which alternate with each other and form rings parallel to the (001) plane. The *non*-bonding electron pairs at the ψ^1 -tetrahedral [AsO₃]^{3–} anions point into cavities, which run along [001] (Figure 2), as do the chains of *trans*-edge shared [(O1)Pr₄]¹⁰⁺ tetrahedra.

Figure 1. Capped and bicapped trigonal prisms $[(Pr1)O_6I]^{10-}$ [001]. and $[(Pr2)O_7I]^{12-}$ (*left*) as well as $[OPr_4]^{10+}$ tetrahedron and ψ^1 -tetrahedral [AsO₃]³⁻ anion (*right*) in the crystal structure of Pr₃OI[AsO₃]₂.

Figure 2. View at the tetragonal crystal structure of $Pr_3OI[AsO_3]_2$ along

- [1] Kang, D-H. (2009). Doctoral Dissertation, Univ. Stuttgart.
- [2] Kang, D.-H.; Komm, T.; Schleid, Th. (2005). Z. Kristallogr., S 22, 157.
- [3] Ben Yahia, H.; Rodewald, U. Ch.; Pöttgen, R. (2009) Z. Naturforsch. 64 b, 896.
- [4] Ledderboge, F. (2016). Doctoral Dissertation, Univ. Stuttgart.
- [5] Locke, R. J. C. (2024). Doctoral Dissertation, Univ. Stuttgart.