Poster

The Trigonal Crystal Structure of Matildite-Type AgBiS₂ Revisited

Falk Lissner¹, Kurt Walenta² and Thomas Schleid¹

¹University of Stuttgart, Institute for Inorganic Chemistry, Germany ²University of Stuttgart, Institute for Mineralogy and Crystal Chemistry, Germany schleid@iac.uni-stuttgart.de

If it appears as a mineral, the ternary sulfide AgBiS₂ can crystallize as schapbachite (cubic, space group: Fm3m, a = 564.8 pm, Z = 2) with a cation-disordered rock-salt structure (Ag⁺/Bi³⁺ at 4*a*, S at 4*b*) [1] or as an ordered trigonal variety (matildite). The latter was first considered as adopting the delafossite structure of α -NaFeO₂ with layerwise ordering of the still octahedrally coordinated cations within a cubic close packing of the S²⁻ anions [1]. The space group, however, given as P3m1 instead of R3m, was conflicting with this structure model. We now were able to refine the crystal structure of maltildite_type AgBiS₂ in <u>a</u> similar trigonal unit cell (a = 407.75(4), c = 1898.3(2) pm) again, but with an ordered cinnabar-related set up, adopting the space group $P3_221$. The ordering of the involved ions on the Wyckoff positions 3b (Ag⁺), 3a (Bi³⁺) and 6c (S²⁻) brings several advantages for the cations. Their different sizes is nicely reflected by the individual distances (d(Ag-S) = 253.0 pm (2×), 285.5 pm (2×) and 312.7 pm (2×) versus d(Bi-S) = 267.8 pm (2×), 286.3 pm (2×) and 304.8 pm (2×)) and their stereochemical demands are fulfilled by their local geometry (short linear S–Ag–S links for C.N. = 2 (Ag⁺: [Kr]4d¹⁰) versus four rather similar Bi–S contacts for C.N. = 4 with a sew-saw conformation allowing for the development of stereochemically active lone-pair of electrons at the Bi³⁺ cation ([Xe]6sp5d¹⁰) pointing to the remote edge of the distorted [BiS₆]⁹⁻ octahedron (Figure 1). This is illustrated in Figure 1 as compared to the cinnabar-type structure of HgS (a = 414.89(2), c = 949.47(5) pm [2]), where the diversification is hidden behind the Hg–S distances (d(Hg-S) = 237.7 pm (2×), 309.3 pm (2×) and 327.9 pm (2×)) for the unique Hg²⁺ cation ([Xe]5d¹⁰).

Figure 1. The trigonal crystal structure of matildite-type AgBiS2 as compared to the cinnabar-type structure of HgS

[1] Geller, S.; Wernick, J. H. (1959) Acta Crystallogr. 12, 46.

[2] Schleid, Th., Lauxmann, P.; Schneck, C. (1999) Z. Kristallogr. 16, 95.

Acta Cryst. (2024). A80, e 267