Poster

In-situ characterization of the epitaxial growth of BaTiO₃ thin films by pulsed laser deposition using synchrotron radiation

N. Leubner¹, M. Zschornak², K. Maksimova³, T. Weigel¹, M. Nentwich³, D. Novikov³, A. Goikhman³, A. Grunin³, D.C. Meyer¹

¹TU Bergakademie Freiberg, Institute of Experimental Physics, 09596 Freiberg, Germany, ²HTW Dresden, Friedrich-List-Platz 1 01069 Dresden, Germany, ³Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

nathan.leubner@physis.tu-freiberg.de

Thin films of perovskites such as BaTiO₃ show different, exceptional behaviour compared to their bulk counterparts [1-5]. The understanding of property changes during the growth process itself is highly desirable. Here we focus on the *in-situ* characterization of BaTiO₃ thin films during the epitaxial growth by pulsed laser deposition (PLD) on different substrates. SrTiO₃, LaAlO₃ and MgO with a (0 0 1) crystal surface and GdScO₃ with a (1 1 0) crystal surface were used as substrate materials. *In-situ* X-ray diffraction (XRD) measurements were carried out using synchrotron radiation, in order to elucidate the growth process of BaTiO₃ thin films. In addition, the XRD experiments were simulated based on kinematic diffraction theory. The simulation results and the generated reciprocal space maps provide a deep insight into the crystal structure and the relaxation processes of BaTiO₃ thin films during the growth process. X-ray reflectometry measurements verify the results of the XRD measurements. The determined critical thickness of BaTiO₃ on a SrTiO₃ substrate is 65 Å. The critical thicknesses of BaTiO₃ on the LaAlO₃ and MgO substrates were estimated to be less than 16 Å and 36 Å, respectively. The critical thickness was found to be greater than 830 Å for the GdScO₃ substrate. A rich phase behaviour of BaTiO₃ thin films is observed, that differs strongly from that of bulk BaTiO₃.

Figure 1. XRD pattern of thin BaTiO₃ films deposited on a SrTiO₃ substrate. The diffraction intensity is shown as a function of the scattering vector (in units of the reciprocal lattice of SrTiO₃). With each growth step (GS) of the PLD process, the film reflections become more intense and sharper and thus characterise the growing BaTiO₃ film. The change in the position of the film reflections indicates ongoing relaxation.

- [1] Everhardt, A. S., Denneulin, T., Grünebohm, A. et al. (2020). Appl. Phys. Rev., 7, 011402.
- [2] Liu, R., Ulbrandt, J.G., Hsing, HC. et al. (2020). Nat. Commun., 11, 2630.
- [3] Guo, R., Shen, L., Wang, H. et al. (2016). Adv. Mater. Interfaces, 3, 1600737.
- [4] Sun, Z., Bai, Y., Liu, Ji. et al. (2022). J. Alloys Compd., 909, 164735.
- [5] Johnsson, M. & Lemmens, P. (2008). J. Phys.: Condens. Matter, 20, 264001.

We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at beamline PETRA III and we would like to thank for assistance in using P23. Beamtime was allocated for proposal I-20220663. We would like to thank the Saxony-DESY Collaboration for the funding and providing the beamtime at DESY P23.