Poster

Crystallographic study of NaClO₃ and NaBrO₃: addressing misconceptions about chirality, absolute configuration, and optical rotation Rachel Mey¹, Manuel A Fernandes¹ and <u>Demetrius C Levendis¹</u>

¹Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa <u>demetrius.levendis@wits.ac.za</u>

The achiral ionic salts, NaClO₃ and NaBrO₃, readily form large, chiral cubic crystals from aqueous solution in the space group $P2_13$. Isomorphous crystals of these salts which have the same absolute configuration rotate polarised light in opposite directions. For most undergraduate students, this is counterintuitive. Generally, the only exposure undergraduate students have to chirality is in organic (and sometimes coordination) chemistry. What is often overlooked is the fact that chirality, and specifically absolute configuration, is not related to the rotation of polarised light. It is also not appreciated that achiral molecules or ions can pack together to form chiral crystals.

There is a vast amount of literature on NaClO₃ and NaBrO₃ (dating from the first crystal structure reported in 1921 [1] to 2024 [2]). Seminal papers on crystals of NaClO₃ include observations by Kondepudi on the effect of stirring on crystallisation, usually resulting in only one chiral form of NaClO₃ [3]; by Viedma, on the use of grinding to purify a mixture of *d*- and *l*-NaClO₃ [4]; and by Soai, on the autocatalysis of chiral molecules from achiral precursors, using chiraly pure NaClO₃ [5]. There is therefore an enormous scope for a 10-week BSc Honours research project [6].

In this paper we discuss several results of the research project, focusing on the experimental determinations of the absolute chirality of NaClO₃ and NaBrO₃ crystals. Large crystals of NaClO₃ were inspected under a polarising microscope to determine the optical rotation of polarised light. The absolute configuration of a NaClO₃ crystal, which rotated polarised light to the left (+), was determined by means of single-crystal X-ray diffraction methods. The data collection of a full sphere of reflections took 10 minutes. The same NaClO₃ crystal was used to seed an aqueous solution of NaBrO₃, which then yielded isomorphous crystals of NaBrO₃. The absolute configuration of one of these NaBrO₃ crystals was again determined using single-crystal X-ray diffraction. The crystals were labelled *l*-NaClO₃ and *d*-NaBrO₃, where *l*- and *d*- refer to opposite absolute configurations. As reported in literature, the rotation of polarised light for these crystals of opposite chirality was, counterintuitively, in the same direction: l-(+) NaClO₃ and d-(+) NaBrO₃.

Figure 1. *l*-NaClO₃ (left) and *d*-NaBrO₃ (right) rotate polarised light in the same direction (adapted diagram from the PhD of Manon Schindler, with permission)

- [1] Dickinson, R. G., & Goodhue, E. A. (1921). J. Am. Chem. Soc, 43(9), 2045.
- [2] Zhang, B., Coquerel, G., Park, B. J., & Kim, W. S. (2024). Cryst. Growth Des. 24(3) 1042.
- [3] Kondepudi, D. K., Kaufman, R. J., & Singh, N. (1990). Science, 250, 975.
- [4] Viedma, C. (2007). Cryst. Growth Des, 7(3), 553.
- [5] Sato, I., Kadowaki, K., & Soai, K. (2000). Angew. Chem. Int. Ed., 112(8), 1570.
- [6] At the University of the Witwatersrand, Johannesburg, South Africa, students complete a three-year BSc, followed by a one- year Honours degree, which includes two short research projects.