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In the past ten years, biological piezoelectric materials have emerged as the potential next generation of cost-effective, green 
electromechanical sensors [1, 2]. The piezoelectric voltages produced under an applied force are inversely proportional to the 
dielectric constant of the material and so even ‘weak’ organic piezoelectrics (with modest piezoelectric constants compared to 
inorganic ceramics [3, 4], can generate large voltages in response to strain. Amino acids are the simplest biological units, and are 
inexpensive and easy to crystallise [5-7], and demonstrate measurable piezoelectricity in single crystal [8-10] and polycrystalline 
forms [11, 12]. 

Recently, we have experimentally validated flexible glycine-based sensors for pipe leak detection and monitoring in real-time, for a 
variety of flow rates and leak sizes using a custom fluid test rig developed for the validation of PVDF patches [13]. This is the first 
time that glycine crystals have been grown and characterised as a high-concentration, polycrystalline aggregate for piezoelectric 
sensing [14]. However, a key limitation of this study is that the piezoelectric response of the film was less than that of glycine single 
crystals due to the random orientation of glycine crystallites [11]. 

In this work, we will systematically study the effect of crystallisation growth parameters on a number of polycrystalline amino acid 
films in order to modulate the piezoelectric response and increase the detection sensitivity and voltage output of amino acid-based 
piezoelectric devices. Moreover, we will investigate and optimise different parameters involved in the polycrystalline film growth 
and characterise the formed polycrystalline films using Scanning Electron Microscopy, X-Ray Diffraction, and Scanning Probing 
Microscopy. The study will highlight the potential of low-dielectric, non-centrosymmetric biomolecular crystal films for widespread 
monitoring of built infra-structure systems by showing how reliably and sustainably they may be used as sensors for pipe structural 
health monitoring (SHM) applications. 
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