Poster

Rb4[As2S10]: A Rubidium Polythioarsenate(V) with an Unusual

Discrete [S₃AsS(S₂)SAsS₃]⁴⁻ Anion

Katja Engel¹, Thomas Schleid¹

¹Institute for Inorganic Chemistry, University of Stuttgart, Germany <u>schleid@iac.uni-stuttgart.de</u>

Since polythioarsenate and -phosphate fluxes were successfully used during the syntheses of quaternary thioarsenates and -phosphates in the past, it is surprising that for thioarsenates just a few $[As_xS_y]^{n-}$ anions such as $[AsS_4]^{3-}$ and $[AsS_3]^{3-}$ are known [1,2]. In an attempt to expand the diversity of those thioarsenates, $Rb_4[As_2S_{10}]$ as the first alkali-metal polythioarsenate(V) including discrete $[S_3AsS(S_2)SAsS_3]^{4-}$ anions occurred.

Rb₄[As₂S₁₀] was synthesized from a mixture of Rb₂S:As₂S₅:S in a molar ratio of 2:1:7, which was heated up to 500 °C in a glassy silica ampoule. Single-crystal XRD shows that Rb₄[As₂S₁₀] crystallizes monoclinically in the space group $P2_1/c$ with a = 1735.21(9) pm, b = 699.36(4) pm, c = 2355.83(12) pm and $\beta = 93.975(3)^{\circ}$ for Z = 6 (CSD number: 2350774). The crystal structure is characterized by discrete [As₂S₁₀]⁴⁻ units, so far unknown for arsenic compounds, separated by Rb⁺ cations with $C.N.(Rb^+) = 8 - 10$. These anions are built by two [AsS₄]³⁻ tetrahedra linked by two sulfur atoms forming a tetrasulfide chain fragment (S 4)²⁻ in the center of each [S₃AsS(S₂)SAsS₃]⁴⁻ entity. This As⁵⁺-bridging chain occurs in different conformations, since the torsion angle in [(As1)(As2)S₁₀]⁴⁻ equals 89.7°, but is 180° for [(As3)₂S₁₀]⁴⁻. Compared with similar polythiophosphates(V) $A_4[P_2S_{10}]$ (A = Rb, Cs), the crystal structure differs with respect to the connecting tetrasulfide chain fragments [3,4]. While for the thiophosphates the chain in [(Pn3)₂S₁₀]⁴⁻ (Pn = P and As) is reported to have unequally occupied split positions [3,4], the crystal structure of Rb₄[As₂S₁₀] appears to be well ordered. The corresponding Raman spectrum is very unique and could be used as a fingerprint. The optical band gap of Rb₄[As₂S₁₀] was calculated to be 2.48 eV.

Figure 1. Raman spectrum of $Rb_4[As_2S_{10}]$ with two structurally different $[As_2S_{10}]^{4-}$ units (a, *left*) and unit-cell content with highlighted $[As_2S_{10}]^{4-}$ anions (b, *right*).

[1] Bera, T. K., Kanatzidis, M. G. (2008). Inorg. Chem. 47, 7068.

- [2] Wu, Y., Näther, C., Bensch, W. (2006). Inorg. Chem. 45, 8835.
- [3] Aitken, J. A., Canlas, C., Weliky, D. P., Kanatzidis, M. G. (2001). Inorg. Chem. 40, 6496.
- [4] Alahmari, F., Davaasuren, B., Khanderi, J., Rothenberger, A. (2016). Z. Anorg. Allg. Chem. 642, 361.