Poster

Quaternary compounds in *R*–*T*–Al–*M* systems

S. Pukas¹, R. Gladyshevskii¹

¹Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

svitlana.pukas@lnu.edu.ua

We are at present carrying out a systematic search for quaternary alumosilicides and alumogermanides containing a rare-earth metal (*R*) and a 3*d*-metal (*T*). Alumosilicides of two compositions, $R_2TAl_4Si_2$, $R_3TAl_3Si_2$, and alumogermanides of four compositions, $RTAl_4Ge_2$, $R_2TAl_4Ge_2$, $R_3TAl_3Ge_2$, $R_5T_3Al_3Ge_4$, were synthesized by arc melting under argon and annealed at 873 K for up to three months. The crystal structures were studied by X-ray powder diffraction. 43 compounds with Si and 92 with Ge were found to adopt the rhombohedral SmNiAl_4Ge_2 (Pearson symbol *hR*24, space group *R*-3*m*), tetragonal Tb₂NiAl_4Ge₂ (*t1*8, *t4/mmm*), hexagonal Y₃NiAl_3Ge₄ (*hP*9, *P*-62*m*), or orthorhombic Er₅Ni₃Al₃Ge₄ (*oP*30, *Pmmn*) structure types (see the table). The distribution of atoms was in all cases fully ordered.

The formation of rows of isotypic compounds R_2 CoAl₄Si₂ and R_3 FeAl₃Si₂ was observed for the first time (shaded in the table). Complete series appear for the late rare-earth elements, sometimes interrupted by the systems with Yb (Sm or Lu). The maximum number of isotypic compounds (85) corresponds to the structure type Y ₃NiAl₃Ge₂, which is a quaternary substitution variant of the binary type Fe₂P. This structure type is observed not only with transition metals of the iron triad, but also with Mn and Cu.

> Rows of isotypic quaternary compounds in *R*–*T*–Al–*M* systems (+ existence established (* in Lviv); – no isotypic compound observed at 873 K) [Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds, Release 2023/24, Eds. P. Villars, K. Cenzual, ASM International, Materials Park, Ohio, USA]

Structure type	Т	R									
		Y	Sm	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Alumosilicides											
Tb ₂ NiAl ₄ Ge ₂	Со	+*	_	+*	+*	+*	+*	+*	+*	_	+*
Y ₃ NiAl ₃ Ge ₂	Fe	+*	+*	+*	+*	+*	+*	+*	+*	-	+*
	Co	+*	+*	+*	+*	+*	+*	+*	+*	_	+*
	Ni	+*	_	+*	+*	+*	+*	+*	+*	_	+*
	Cu	+*	+*	+*	+*	+*	+*	+*	+*	_	+*
Alumogermanides								•			
SmNiAl ₄ Ge ₂	Ni	+	+	+*	+*	+*	+*	+*	+*	_	+*
Tb ₂ NiAl ₄ Ge ₂	Fe	+*	+*	+*	+*	+*	+*	+*	+*	_	+*
	Co	+*	+*	+*	+*	+*	+*	+*	+*	+*	+*
	Ni	+*	+*	+*	+	+*	+*	+*	+*	+*	_
Y ₃ NiAl ₃ Ge ₂	Mn	+*	+*	+*	+*	+*	+*	+*	+*	+*	+*
	Fe	+*	+*	+*	+*	+*	+*	+*	+*	+*	+*
	Co	+*	+*	+*	+*	+*	+*	+*	+*	+*	+*
	Ni	+	+*	+*	+*	+*	+*	+*	+*	+*	+*
	Cu	+*	+*	+	+	+*	+*	+*	+*	+*	+*
Er ₅ Ni ₃ Al ₃ Ge ₄	Ni					+*	+*	+*	+*	+*	

This work was carried out under the project "Search for new structure types" of the company Material Phases Data System, Vitznau, Switzerland.